Attitudes and perception of artificial intelligence in healthcare: A cross-sectional survey among patients

Abstract:

Objective: The attitudes about the usage of artificial intelligence in healthcare are controversial. Unlike the perception of healthcare professionals, the attitudes of patients and their companions have been of less interest so far. In this study, we aimed to investigate the perception of artificial intelligence in healthcare among this highly relevant group along with the influence of digital affinity and sociodemographic factors. Methods: We conducted a cross-sectional study using a paper-based questionnaire with patients and their companions at a German tertiary referral hospital from December 2019 to February 2020. The questionnaire consisted of three sections examining (a) the respondents’ technical affinity, (b) their perception of different aspects of artificial intelligence in healthcare and (c) sociodemographic characteristics. Results: From a total of 452 participants, more than 90% already read or heard about artificial intelligence, but only 24% reported good or expert knowledge. Asked on their general perception, 53.18% of the respondents rated the use of artificial intelligence in medicine as positive or very positive, but only 4.77% negative or very negative. The respondents denied concerns about artificial intelligence, but strongly agreed that artificial intelligence must be controlled by a physician. Older patients, women, persons with lower education and technical affinity were more cautious on the healthcare-related artificial intelligence usage. Conclusions: German patients and their companions are open towards the usage of artificial intelligence in healthcare. Although showing only a mediocre knowledge about artificial intelligence, a majority rated artificial intelligence in healthcare as positive. Particularly, patients insist that a physician supervises the artificial intelligence and keeps ultimate responsibility for diagnosis and therapy.

Projects: SMITH - Smart Medical Information Technology for Healthcare

Publication type: Journal article

Journal: Digit. Health

Publisher: SAGE Publications

Human Diseases: No Human Disease specified

Citation: Digit. Health 8:20552076221116772

Date Published: 2022

Registered Mode: imported from a bibtex file

Authors: Sebastian J Fritsch, Andrea Blankenheim, Alina Wahl, Petra Hetfeld, Oliver Maassen, Saskia Deffge, Julian Kunze, Rolf Rossaint, Morris Riedel, Gernot Marx, Johannes Bickenbach

Help
help Submitter
Activity

Views: 1255

Created: 24th Feb 2023 at 17:05

help Tags

This item has not yet been tagged.

help Attributions

None

Related items

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies