The aim of the medical informatics initiative is to ensure that, in future, each doctor, patient and researcher has access to the information they require – while simultaneously allowing individuals to maintain control over their personal data.
This will lead to more precise diagnostics, and better treatment decisions. It will yield new insights for research and medicine. And it will improve patient care and help combat diseases more effectively. Specifically, the initiative is about harnessing the flood of data generated every single day in healthcare and research environments – to the benefit of individual patients, to better understand illnesses, and to tailor treatments to the needs of the individual.
The goal is to establish a way to exchange research and care data across university hospitals. If it proves successful – with the help of funding from BMBF – it will open up entirely new horizons. The solutions that will be developed are expected to create added value across the health system.
The medical informatics initiative was created to close the gap between research and healthcare. All of Germany’s university hospitals have joined forces with research institutions, businesses, health insurers, and patient advocacy groups to create a framework that harnesses research findings to the direct benefit of patients. The German Federal Ministry of Education and Research (BMBF) is investing around 160 million euros in the programme through 2021. The digitisation of medicine is creating new opportunities for patient care and research; BMBF launched its medical informatics initiative to make the most of this transformation. In the initiative’s first phase, university hospitals and partner organisations will establish and link data integration centres. These centres will allow research and healthcare data to be aggregated and integrated across multiple entities and sites. At the same time, innovative IT solutions for specific medical applications will be developed to demonstrate the benefits of high-tech digital healthcare services and infrastructures.
Participating university hospitals and their partners have formed consortia. These are tasked with developing strategies for shared data use and exchange. They will subsequently establish the data integration centres, and create IT solutions for concrete use cases.
These activities are coordinated by a national steering committee (NSG), to ensure the interoperability of IT systems and data integration centres between the consortia. In addition, a dedicated coordination office supports cross-consortia collaboration. This office is managed jointly by TMF – Technology, Methods and Infrastructure for Networked Medical Research, MFT (Medizinischer Fakultätentag – an association of German medical faculties), and VUD (Verband der Universtitätsklinika Deutschlands, which represents 33 university hospitals in Germany).
Web page: https://www.medizininformatik-initiative.de/en
Funding codes:- BMBF
Related items
- Projects (3)
- Institutions (23)
- Investigations (4)
- Studies (4)
- Resources (6)
- Publications (85)
- Data files (17)
- Models (1)
- Documents (1)
- Presentations (1)
- People (54)
- Events (1)
PheP is a platform that enables clinical researchers to work together with statisticians and computer scientists in interdisciplinary collaboration to pursue scientific issues that previously seemed economically and technologically unthinkable. For this purpose, it is necessary to build data sets that can be used for clinical-epidemiological and health-economic issues.From phenotypes, i.e. determinable characteristics of patients, further characteristics can be derived and provided via phenotyping. ...
Programme: MII - Medical Informatics Initiative
Public web page: https://www.smith.care/en/projects/use-case-phep/
Organisms: Not specified
Medical data routinely generated in everyday clinical practice is processed and made available to medical research in a standardized form. Patients benefit from reliable research results, more precise diagnoses and better treatments. In order to link data from care and research, the participating university hospitals in Aachen, Bonn, Essen, Halle, Hamburg, Jena and Leipzig have established sustainable Data Integration Centers. The network partners Ruhr University Bochum, the Düsseldorf University ...
Programme: MII - Medical Informatics Initiative
Public web page: https://www.smith.care/
Start date: 1st Jan 2018
Organisms: Homo sapiens
The aim of the project is to use methods and processes of the Medical Informatics Initiative (MII) to contribute to the detection of health risks in patients with polypharmacy. Polypharmacy occurs especially in elderly patients with multimorbidity. Polypharmacy associated with an increased risk for medication errors and drug-drug or drug-disease interactions, which either reduce or intensify the desired effect of individual active substances or lead to undesired adverse drug effects (ADE). In the ...
Programme: MII - Medical Informatics Initiative
Public web page: https://www.medizininformatik-initiative.de/en/POLAR
Organisms: Homo sapiens
One of the challenges of Phenotypingt is that too little clinical information is available as machine-readable data sets. Admission letters, findings and operating room reports in particular contain valuable information such as diagnoses, medications, side effects and laboratory data that can only be extracted using methods of natural language processing and semantic text analysis methods. Natural Language Processing (NLP) is used to process documents from the Hospital Information System (HIS). ...
Snapshots: No snapshots
PheP is a platform that enables clinical researchers to work together with statisticians and computer scientists in interdisciplinary collaboration to pursue scientific issues that previously seemed economically and technologically unthinkable. For this purpose, it is necessary to build data sets that can be used for clinical-epidemiological and health-economic issues.
From phenotypes, i.e. determinable characteristics of patients, further characteristics can be derived and provided via phenotyping. ...
Snapshots: No snapshots
Test data for POLAR and other use cases
Submitter: Frank A. Meineke
Studies: FHIR Test Data
Resources: General FHIR Test Data, POLAR, Vorhofflimmern
Snapshots: No snapshots
Submitter: Alexandr Uciteli
Studies: Ontological Modelling of Basic Eligibility Criteria, Ontological Modelling of Type 2 Diabetes Mellitus (T2DM) Phenotype, PhenoMan Evaluation with Synthetic FHIR Data
Resources: Basic Eligibility Criteria of an Example Blood Pressure Study, Ontological Modelling of T2DM Phenotype using Phenotype Manager (PhenoMan), PhenoMan Evaluation - Synthetic FHIR Data
Snapshots: No snapshots
The test data
- are freely invented by clinical experts (manually, synthetically) and have no relation to real persons
- have been generated by a tool developed at the University of Leipzig from contributions of different expert groups out of a MS Excel format
- are available for free use as HL7® FHIR® bundles in json format;
- are suitable for direct transfer into a FHIR server
- correspond as far as ...
Submitter: Frank A. Meineke
Investigation: Test Data
Resources: General FHIR Test Data, POLAR, Vorhofflimmern
Study type: Not specified
Snapshots: No snapshots
We evaluated if the PhenoMan returns correct/complete result sets and if it is working with real data. To simulate a FHIR health data store with real data we used Synthea(TM) to generate a large data set and imported it into a HAPI FHIR JPA Server. Based on the synthetic data set we developed ten example queries with different structure and complexity with PhenoMan and SQL. We compared the results of the queries in means of execution time and equality of results.
The detailed steps of the evaluation ...
Submitter: Christoph Beger
Investigation: Ontology-based Phenotyping
Resources: PhenoMan Evaluation - Synthetic FHIR Data
Study type: Not specified
Snapshots: No snapshots
Submitter: Alexandr Uciteli
Investigation: Ontology-based Phenotyping
Resources: Basic Eligibility Criteria of an Example Blood Pressure Study
Study type: Not specified
Snapshots: No snapshots
Submitter: Alexandr Uciteli
Investigation: Ontology-based Phenotyping
Resources: Ontological Modelling of T2DM Phenotype using Phenotype Manager (PhenoMan)
Study type: Not specified
Snapshots: No snapshots
Polar test data for individual workpackages with different FHIR structure.
Submitter: Alexander Strübing
Resource type: Experimental Assay Type
Technology type: Technology Type
Investigation: Test Data
Study: FHIR Test Data
Human Diseases: No human diseases
Data files: POLAR_WP_1.1_v2, POLAR_WP_1.1_v3_MultipleEncountersOverlappingSt..., POLAR_WP_1.1_v4a_ReferencesConditionsToEncounter, POLAR_WP_1.1_v4b_ReferencesOnlyConditionsToEnco..., POLAR_WP_1.x_v1_MixedTestCasesForAllWorkpackages
Snapshots: No snapshots
Collection of general FHIR test data
Submitter: Alexander Strübing
Resource type: Experimental Assay Type
Technology type: Technology Type
Investigation: Test Data
Study: FHIR Test Data
Allgemein
Alle einzelnen Datensätze sind aufgeteilt in jeweils (maximal) 1000 Patienten, die jeweils als json.zip
und ndjson
verfügbar sind.
Die json.zip
und ndjson
beinhalten jeweils bis zu 1000 Transaktion-Bundles mit jeweils 1 Patienten.
Die gleichnamige Excel-Datei ist die Vorlage zum Generieren JSON-Dateien.
VHF-Testdaten_01
Ursprüngliche Vorhofflimmern (VHF) Testdaten sind Patienten
- unterschiedlichen Alters (17 bis 83 Jahre, davon 3300 Patienten mit Alter > 65 Jahre)
- mit ...
Submitter: Alexander Strübing
Resource type: Experimental Assay Type
Technology type: Technology Type
Investigation: Test Data
Study: FHIR Test Data
This assay bundles all synthetic FHIR data of the PhenoMan evaluation. The data arised from a subset of a Synthea(TM) generated data set. We truncated some resource types like Encounter and Provider to reduce the size of the data set and to speed up the import in a FHIR health data store.
Submitter: Christoph Beger
Resource type: Result Dataset of Clinical Study
Technology type: Technology Type
Investigation: Ontology-based Phenotyping
Human Diseases: asthma, bronchial disease, hypertension, obesity
Data files: PhenoMan Evaluation - AllergyIntolerance FHIR R..., PhenoMan Evaluation - Condition FHIR Resources, PhenoMan Evaluation - Observation FHIR Resources, PhenoMan Evaluation - Patient FHIR Resources
Snapshots: No snapshots
Submitter: Alexandr Uciteli
Biological problem addressed: Model Analysis Type
Investigation: Ontology-based Phenotyping
Human Diseases: No human diseases
Models: No Models
Data files: Eligibility Criteria Ontology for an Example Bl...
Snapshots: No snapshots
We modelled the algorithm for determining Type 2 Diabetes Mellitus (T2DM) cases presented by PheKB.org using Phenotype Manager (PhenoMan).
Submitter: Alexandr Uciteli
Biological problem addressed: Model Analysis Type
Investigation: Ontology-based Phenotyping
Human Diseases: diabetes mellitus
Models: No Models
Data files: T2DM Case 1 Reasoner Report, T2DM Case 2 Reasoner Report, T2DM Case 3 Reasoner Report, T2DM Case 4 Reasoner Report, T2DM Case 5 Reasoner Report, T2DM Graphical Representation, T2DM Ontology, T2DM Tabular Representation
Snapshots: No snapshots
Abstract (Expand)
Authors: Sven Festag, Cord Spreckelsen
Date Published: 1st Feb 2023
Publication Type: Journal article
Citation: J. Biomed. Inform. 139:104320
Abstract (Expand)
Authors: J. Palm, F. A. Meineke, J. Przybilla, T. Peschel
Date Published: 25th Jan 2023
Publication Type: Journal article
PubMed ID: 36696915
Citation: Appl Clin Inform. 2023 Jan;14(1):54-64. doi: 10.1055/s-0042-1760436. Epub 2023 Jan 25.
Abstract (Expand)
Authors: Chadi Barakat, Marcel Aach, Andreas Schuppert, Sigur\dhur Brynjólfsson, Sebastian Fritsch, Morris Riedel
Date Published: 2023
Publication Type: Journal article
Citation: Diagnostics (Basel) 13(3):391
Abstract (Expand)
Authors: Julia Palm, Frank A Meineke, Jens Przybilla, Thomas Peschel
Date Published: 2023
Publication Type: Journal article
Citation: Appl. Clin. Inform. 14(1):54–64
Abstract (Expand)
Authors: Martin Bialke, Lars Geidel, Christopher Hampf, Arne Blumentritt, Peter Penndorf, Ronny Schuldt, Frank-Michael Moser, Stefan Lang, Patrick Werner, Sebastian Stäubert, Hauke Hund, Fady Albashiti, Jürgen Gührer, Hans-Ulrich Prokosch, Thomas Bahls, Wolfgang Hoffmann
Date Published: 1st Dec 2022
Publication Type: Journal article
Citation: BMC Med. Inform. Decis. Mak. 22(1):335
Abstract (Expand)
Authors: Konstantin Sharafutdinov, Jayesh S Bhat, Sebastian Johannes Fritsch, Kateryna Nikulina, Moein E Samadi, Richard Polzin, Hannah Mayer, Gernot Marx, Johannes Bickenbach, Andreas Schuppert
Date Published: 1st Oct 2022
Publication Type: Journal article
Citation: Front. Big Data 5:603429
Abstract (Expand)
Authors: André Scherag, Wahram Andrikyan, Tobias Dreischulte, Pauline Dürr, Martin F Fromm, Jan Gewehr, Ulrich Jaehde, Miriam Kesselmeier, Renke Maas, Petra A Thürmann, Frank Meineke, Daniel Neumann, Julia Palm, Thomas Peschel, Editha Räuscher, Susann Schulze, Torsten Thalheim, Thomas Wendt, Markus Loeffler, D Ammon, W Andrikyan, U Bartz, B Bergh, T Bertsche, O Beyan, S Biergans, H Binder, M Boeker, H Bogatsch, R Böhm, A Böhmer, J Brandes, C Bulin, D Caliskan, I Cascorbi, M Coenen, F Dietz, F Dörje, T Dreischulte, J Drepper, P Dürr, A Dürschmid, F Eckelt, R Eils, A Eisert, C Engel, F Erdfelder, K Farker, M Federbusch, S Franke, N Freier, T Frese, M Fromm, K Fünfgeld, T Ganslandt, J Gewehr, D Grigutsch, W Haefeli, U Hahn, A Härdtlein, R Harnisch, S Härterich, M Hartmann, R Häuslschmid, C Haverkamp, O Heinze, P Horki, M Hug, T Iskra, U Jaehde, S Jäger, P Jürs, C Jüttner, J Kaftan, T Kaiser, K Karsten Dafonte, M Kesselmeier, S Kiefer, S Klasing, O Kohlbacher, D Kraska, S Krause, S Kreutzke, R Krock, K Kuhn, S Lederer, M Lehne, M Löbe, M Loeffler, C Lohr, V Lowitsch, N Lüneburg, M Lüönd, I Lutz, R Maas, U Mansmann, K Marquardt, A Medek, F Meineke, A Merzweiler, A Michel-Backofen, Y Mou, B Mussawy, D Neumann, J Neumann, C Niklas, M Nüchter, K Oswald, J Palm, T Peschel, H Prokosch, J Przybilla, E Räuscher, L Redeker, Y Remane, A Riedel, M Rottenkolber, F Rottmann, F Salman, J Schepers, A Scherag, F Schmidt, S Schmiedl, K Schmitz, G Schneider, A Scholtz, S Schorn, B Schreiweis, S Schulze, A K Schuster, M Schwab, H Seidling, S Semler, K Senft, M Slupina, R Speer, S Stäubert, D Steinbach, C Stelzer, H Stenzhorn, M Strobel, T Thalheim, M Then, P Thürmann, D Tiller, P Tippmann, Y Ucer, S Unger, J Vogel, J Wagner, J Wehrle, D Weichart, L Weisbach, S Welten, T Wendt, R Wettstein, I Wittenberg, R Woltersdorf, M Yahiaoui-Doktor, S Zabka, S Zenker, S Zeynalova, L Zimmermann, D Zöller, für das POLAR-Projekt
Date Published: 1st Sep 2022
Publication Type: Journal article
Citation: Prävent. Gesundheitsförderung
Abstract (Expand)
Editor:
Date Published: 17th Aug 2022
Publication Type: InProceedings
PubMed ID: 36073490
DOI: 10.3233/SHTI220805
Citation: Modersohn L, Schulz S, Lohr C, Hahn U. GRASCCO - The First Publicly Shareable, Multiply-Alienated German Clinical Text Corpus. Stud Health Technol Inform. 2022 Aug 17;296:66-72. doi: 10.3233/SHTI220805. PMID: 36073490.
Abstract (Expand)
Authors: Luise Modersohn, Stefan Schulz, Christina Lohr, Udo Hahn
Date Published: 1st Aug 2022
Publication Type: InCollection
Citation: In Studies in Health Technology and Informatics of Studies in health technology and informatics, IOS Press
Abstract (Expand)
Authors: Sven Zenker, Daniel Strech, Kristina Ihrig, Roland Jahns, Gabriele Müller, Christoph Schickhardt, Georg Schmidt, Ronald Speer, Eva Winkler, Sebastian Graf von Kielmansegg, Johannes Drepper
Date Published: 1st Jul 2022
Publication Type: Journal article
Citation: J. Biomed. Inform. 131(104096):104096
Allgemein
Es sind 165 neue Patienten mit den gleichen Patientendaten, aus denen der Datensatz POLAR_WP_1.1_v2
generiert wurde, nur dass zusätzlich jede Condition eine Referenz zum Encounter hat. Da der Encounter selbst auch eine Referenz auf die Condition hat, gibt es hier eine Kreisreferenz, deren Upload einige FHIR-Server ablehnen (z.B. Vonk).
POLAR_WP_1.1_v4a_ReferencesConditionsToEncounter
=
Condition : 330 Consent : 100 Encounter : 330 Medication : 10 MedicationAdministration : 165 ...
All creators
Dies sind die originalen Polar-Testdaten. Die Patienten sind aus echten Fällen abgeleitet. 61 Patienten (Patient)
- mit jeweils 1 Einrichtungskontakt (Encounter) und jeweils 1 - 3 Abteilungskontakten (Encounter)
- mit Diagnosen (Condition)
- mit Laborwerten (Observation)
- mit Vitalwerten (Observation)
- mit Prozeduren (Procedure)
- mit Medikation (Medication, Medication Administration, Medication Statement)
Condition : 270 Encounter : 129 Medication : 242 MedicationAdministration : 165 ...
Creators: Alexander Strübing, Jan Erik Gewehr, Friederike Salman, Yvonne Lemke, Norman Freier, Steffen Härterich, Thomas Maulhardt, Martin Böker, Ingolf Cascorbi, Ruwen Böhm, Felix Rottmann, Claudia Bulin, Anna Böhmer, Ulrich Jaehde, Katharina Karsten Dafonte, Martin Coenen, Gunther Hartmann, Martin Fromm, Renke Maas, Pauline Dürr, Melanie Then, Wahram Andrikyan
Submitter: Alexander Strübing
Data file type: Not specified
Allgemein
Alle einzelnen Datensätze sind aufgeteilt in jeweils (maximal) 1000 Patienten, die jeweils als json.zip
und ndjson
verfügbar sind.
Die json.zip
und ndjson
beinhalten jeweils bis zu 1000 Transaktion-Bundles mit jeweils 1 Patienten.
Die gleichnamige Excel-Datei ist die Vorlage zum Generieren JSON-Dateien.
VHF-Testdaten_01
Ursprüngliche Vorhofflimmern (VHF) Testdaten sind Patienten
- unterschiedlichen Alters (17 bis 83 Jahre, davon 3300 Patienten mit Alter > 65 Jahre)
- mit ...
Allgemein
Datensatz zum Testen der Polar Workpackages, die jeweils als json.zip
und ndjson
verfügbar sind.
Die json.zip
und ndjson
beinhalten jeweils bis zu 1000 Transaktion-Bundles mit 1 Patienten.
Die gleichnamige Excel-Datei ist die Vorlage zum Generieren JSON-Dateien.
POLAR_WP_1.x_v1_MixedTestCasesForAllWorkpackages
Der Datensatz enthält Testfälle für alle Workpackages. Er wird nach Bedarf immer wieder erweitert.
Achtung
DIESE DATEN SIND NICHT KDS-KONFORM. DER VALIDATOR WÜRDE SIE ABLEHNEN.
Sie werden aber zum Testen gebraucht, da einige DIZ-FHIR-Server anscheinend mit solchen unvalidierten Daten bespielt wurden.
Allgemein
Es sind 165 neue Patienten mit den gleichen Patientendaten, aus denen der Datensatz POLAR_WP_1.1_v2
generiert wurde, nur dass hier jede Condition eine Referenz zum Encounter hat, aber der Encounter keine Referenz auf die Condition. Die letzte der beiden Referenzen müsste aber auf
...
Allgemein
Es sind 70 neue Patienten mit den gleichen Patientendaten, aus denen der Datensatz POLAR_WP_1.1_v2
generiert wurde. Jeder Patient hat entweder 2 oder 4 Encounter, wobei einer immer ein Einrichtungskontakt ist und ein weiterer Encounter als Part-Of ein Abteilungskontakt. Die beiden zusammengehörigen Encounter haben immer dieselben Start- und Endzeiten.
Die zusätzlichen Encounter sind alle mit einer jeweils einer Diagnose verbunden, die im Polar Workpackage 1.1 nicht relevant sind.
...
Allgemein
Datensätze sind aufgeteilt in jeweils 1650 Patienten, die jeweils als json.zip
und ndjson
verfügbar sind.
Die json.zip
und ndjson
beinhalten jeweils 1000 Transaktion-Bundles mit 1 Patienten.
Die gleichnamige Excel-Datei ist die Vorlage zum Generieren JSON-Dateien.
POLAR_WP_1.1_v2
Generierte Daten aus im Grunde nur 165 Patienten (für jede Diagnose 1 Patient), die verhundertfacht wurden. Details siehe unten.
165 verschiedene Patienten (Patient)
- mit jeweils 1 Einrichtungskontakt ...
Image of main FHIR resources with core data set (KDS) compliant linking.
Investigations: No Investigations
Studies: No Studies
Resources: No Resources
T2DM Phenotype Algorithm Specification Ontology (PASO) developed using PhenoMan
Investigations: Ontology-based Phenotyping
Studies: Ontological Modelling of Type 2 Diabetes Mellit...
Resources: Ontological Modelling of T2DM Phenotype using P...
The tabular representation of the T2DM phenotype algorithm generated by PhenoMan using the T2DM ontology
Investigations: Ontology-based Phenotyping
Studies: Ontological Modelling of Type 2 Diabetes Mellit...
Resources: Ontological Modelling of T2DM Phenotype using P...
Creator: Christina Lohr
Submitter: Christina Lohr
Model type: Not specified
Model format: Not specified
Environment: Not specified
Organism: Not specified
Human Disease: Not specified
Investigations: No Investigations
Studies: No Studies
Resources: No Resources
Image of main FHIR resources with core data set (KDS) compliant linking.
Creator: Alexander Strübing
Submitter: Alexander Strübing
Investigations: No Investigations
Studies: No Studies
Resources: No Resources
Presentation on JOWO/ODLS 2019 in Graz
Creators: Alexandr Uciteli, Christoph Beger
Submitter: Christoph Beger
Projects: SMITH - Smart Medical Information Technology for Healthcare, POLAR - Polypharmacy, Drug Interactions, Risks
Institutions: Universitätsklinikum Jena
https://orcid.org/0000-0001-8960-7316Expertise: data sharing, Interoperability, data integration, medical informatics
Tools: fhir, IHE, HL7, 3LGM² Tool
As head of the Data Integration Center at Jena University Hospital, Dr. Danny Ammon is active in the areas of standardization, processing and communication of medical documentation for healthcare and biomedical research.
Projects: POLAR - Polypharmacy, Drug Interactions, Risks
Institutions: Friedrich-Alexander Universität Erlangen-Nürnberg
Projects: LHA - Leipzig Health Atlas, Onto-Med Research Group, SMITH - Smart Medical Information Technology for Healthcare, Task Force COVID-19 Leipzig, NFDI4Health, LIFE Child, LIFE - Leipzig Research Center for Civilization Diseases, Project Test Demonstrator
Institutions: Institute for Medical Informatics, Statistics and Epidemiology (IMISE), Universitätsklinikum Leipzig, AöR, invalid
https://orcid.org/0000-0002-1166-0368Expertise: data integration, ruby, r, java, perl
Profile image source: Swen Reichhold
Projects: POLAR - Polypharmacy, Drug Interactions, Risks
Institutions: University Medical Center Schleswig-Holstein
Projects: POLAR - Polypharmacy, Drug Interactions, Risks
Institutions: University Medical Center Schleswig-Holstein
Projects: POLAR - Polypharmacy, Drug Interactions, Risks
Institutions: Universität Bonn
Projects: POLAR - Polypharmacy, Drug Interactions, Risks
Institutions: University Medical Center Schleswig-Holstein
Projects: POLAR - Polypharmacy, Drug Interactions, Risks
Institutions: Universitätsklinikum Bonn, AöR
Projects: SMITH - Smart Medical Information Technology for Healthcare
Institutions: Averbis GmbH Freiburg
Projects: SMITH - Smart Medical Information Technology for Healthcare
Institutions: Universitätsklinikum Essen
The Joint Ontology WOrkshops (JOWO) is a venue of workshops that, together, address a wide spectrum of topics related to ontology research, ranging from Cognitive Science to Knowledge Representation, Natural Language Processing, Artificial Intelligence, Logic, Philosophy, and Linguistics.
Country: Austria
City: Graz