System for context-specific visualization of clinical practice guidelines (GuLiNav): Concept and software implementation

Abstract:

BACKGROUND: Clinical decision support systems often adopt and operationalize existing clinical practice guidelines leading to higher guideline availability, increased guideline adherence, and data integration. Most of these systems use an internal state-based model of a clinical practice guideline to derive recommendations but do not provide the user with comprehensive insight into the model. OBJECTIVE: Here we present a novel approach based on dynamic guideline visualization that incorporates the individual patient’s current treatment context. METHODS: We derived multiple requirements to be fulfilled by such an enhanced guideline visualization. Using business process and model notation as the representation format for computer-interpretable guidelines, a combination of graph-based representation and logical inferences is adopted for guideline processing. A context-specific guideline visualization is inferred using a business rules engine. RESULTS: We implemented and piloted an algorithmic approach for guideline interpretation and processing. As a result of this interpretation, a context-specific guideline is derived and visualized. Our implementation can be used as a software library but also provides a representational state transfer interface. Spring, Camunda, and Drools served as the main frameworks for implementation. A formative usability evaluation of a demonstrator tool that uses the visualization yielded high acceptance among clinicians. CONCLUSIONS: The novel guideline processing and visualization concept proved to be technically feasible. The approach addresses known problems of guideline-based clinical decision support systems. Further research is necessary to evaluate the applicability of the approach in specific medical use cases.

Projects: SMITH - Smart Medical Information Technology for Healthcare

Publication type: Journal article

Journal: JMIR Form. Res.

Publisher: JMIR Publications Inc.

Human Diseases: No Human Disease specified

Citation: JMIR Form. Res. 6(6):e28013

Date Published: 1st Jun 2022

Registered Mode: imported from a bibtex file

Authors: Jonas Fortmann, Marlene Lutz, Cord Spreckelsen

Help
help Submitter
Activity

Views: 1141

Created: 24th Feb 2023 at 17:05

help Tags

This item has not yet been tagged.

help Attributions

None

Related items

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies