Multi-institutional breast cancer detection using a secure on-boarding service for Distributed Analytics

Abstract:

The constant upward movement of data-driven medicine as a valuable option to enhance daily clinical practice has brought new challenges for data analysts to get access to valuable but sensitive data due to privacy considerations. One solution for most of these challenges are Distributed Analytics (DA) infrastructures, which are technologies fostering collaborations between healthcare institutions by establishing a privacy-preserving network for data sharing. However, in order to participate in such a network, a lot of technical and administrative prerequisites have to be made, which could pose bottlenecks and new obstacles for non-technical personnel during their deployment. We have identified three major problems in the current state-of-the-art. Namely, the missing compliance with FAIR data principles, the automation of processes, and the installation. In this work, we present a seamless on-boarding workflow based on a DA reference architecture for data sharing institutions to address these problems. The on-boarding service manages all technical configurations and necessities to reduce the deployment time. Our aim is to use well-established and conventional technologies to gain acceptance through enhanced ease of use. We evaluate our development with six institutions across Germany by conducting a DA study with open-source breast cancer data, which represents the second contribution of this work. We find that our on-boarding solution lowers technical barriers and efficiently deploys all necessary components and is, therefore, indeed an enabler for collaborative data sharing.

Projects: SMITH - Smart Medical Information Technology for Healthcare

Publication type: Journal article

Journal: Appl. Sci. (Basel)

Publisher: MDPI AG

Human Diseases: No Human Disease specified

Citation: Appl. Sci. (Basel) 12(9):4336

Date Published: 1st Apr 2022

Registered Mode: imported from a bibtex file

Authors: Sascha Welten, Lars Hempel, Masoud Abedi, Yongli Mou, Mehrshad Jaberansary, Laurenz Neumann, Sven Weber, Kais Tahar, Yeliz Ucer Yediel, Matthias Löbe, Stefan Decker, Oya Beyan, Toralf Kirsten

Help
help Submitter
Activity

Views: 1119

Created: 24th Feb 2023 at 17:05

help Tags

This item has not yet been tagged.

help Attributions

None

Related items

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies