Reduction of platelet outdating and shortage by forecasting demand with statistical learning and deep neural networks: Modeling study

Abstract:

BACKGROUND: Platelets are a valuable and perishable blood product. Managing platelet inventory is a demanding task because of short shelf lives and high variation in daily platelet use patterns. Predicting platelet demand is a promising step toward avoiding obsolescence and shortages and ensuring optimal care. OBJECTIVE: The aim of this study is to forecast platelet demand for a given hospital using both a statistical model and a deep neural network. In addition, we aim to calculate the possible reduction in waste and shortage of platelets using said predictions in a retrospective simulation of the platelet inventory. METHODS: Predictions of daily platelet demand were made by a least absolute shrinkage and selection operator (LASSO) model and a recurrent neural network (RNN) with long short-term memory (LSTM). Both models used the same set of 81 clinical features. Predictions were passed to a simulation of the blood inventory to calculate the possible reduction in waste and shortage as compared with historical data. RESULTS: From January 1, 2008, to December 31, 2018, the waste and shortage rates for platelets were 10.1% and 6.5%, respectively. In simulations of platelet inventory, waste could be lowered to 4.9% with the LASSO and 5% with the RNN, whereas shortages were 2.1% and 1.7% with the LASSO and RNN, respectively. Daily predictions of platelet demand for the next 2 days had mean absolute percent errors of 25.5% (95% CI 24.6%-26.6%) with the LASSO and 26.3% (95% CI 25.3%-27.4%) with the LSTM (P=.01). Predictions for the next 4 days had mean absolute percent errors of 18.1% (95% CI 17.6%-18.6%) with the LASSO and 19.2% (95% CI 18.6%-19.8%) with the LSTM (P<.001 both models allow for predictions of platelet demand with similar and sufficient accuracy to significantly reduce waste shortage in a retrospective simulation study. the possible improvements inventory management are roughly equivalent us per year. conclusions:=""></.001>

Projects: SMITH - Smart Medical Information Technology for Healthcare

Publication type: Journal article

Journal: JMIR Med. Inform.

Publisher: JMIR Publications Inc.

Human Diseases: No Human Disease specified

Citation: JMIR Med. Inform. 10(2):e29978

Date Published: 1st Feb 2022

Registered Mode: imported from a bibtex file

Authors: Maximilian Schilling, Lennart Rickmann, Gabriele Hutschenreuter, Cord Spreckelsen

Help
help Submitter
Activity

Views: 879

Created: 24th Feb 2023 at 17:05

help Tags

This item has not yet been tagged.

help Attributions

None

Related items

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies