Genomic profiling reveals distinctive molecular relapse patterns in IDH1/2 wild-type glioblastoma.

Abstract:

Molecular changes associated with the progression of glioblastoma after standard radiochemotherapy remain poorly understood. We compared genomic profiles of 27 paired primary and recurrent IDH1/2 wild-type glioblastomas by genome-wide array-based comparative genomic hybridization. By bioinformatic analysis, primary and recurrent tumor profiles were normalized and segmented, chromosomal gains and losses identified taking the tumor cell content into account, and difference profiles deduced. Seven of 27 (26%) pairs lacked DNA copy number differences between primary and recurrent tumors (equal pairs). The recurrent tumors in 9/27 (33%) pairs contained all chromosomal imbalances of the primary tumors plus additional ones, suggesting a sequential acquisition of and/or selection for aberrations during progression (sequential pairs). In 11/27 (41%) pairs, the profiles of primary and recurrent tumors were divergent, i.e., the recurrent tumors contained additional aberrations but had lost others, suggesting a polyclonal composition of the primary tumors and considerable clonal evolution (discrepant pairs). Losses on 9p21.3 harboring the CDKN2A/B locus were significantly more common in primary tumors from sequential and discrepant (nonequal) pairs. Nonequal pairs showed ten regions of recurrent genomic differences between primary and recurrent tumors harboring 46 candidate genes associated with tumor recurrence. In particular, copy numbers of genes encoding apoptosis regulators were frequently changed at progression. In summary, approximately 25% of IDH1/2 wild-type glioblastoma pairs have stable genomic imbalances. In contrast, approximately 75% of IDH1/2 wild-type glioblastomas undergo further genomic aberrations and alter their clonal composition upon recurrence impacting their genomic profile, a process possibly facilitated by 9p21.3 loss in the primary tumor. (c) 2014 Wiley Periodicals, Inc.

PubMed ID: 24706357

Projects: GGN - German Glioma Network

Publication type: Not specified

Journal: Genes Chromosomes Cancer

Human Diseases: Glioblastoma multiforme

Citation: Genes Chromosomes Cancer. 2014 Jul;53(7):589-605. doi: 10.1002/gcc.22169. Epub 2014 Apr 4.

Date Published: 8th Apr 2014

Registered Mode: by PubMed ID

Authors: V. Riehmer, J. Gietzelt, U. Beyer, B. Hentschel, M. Westphal, G. Schackert, M. C. Sabel, B. Radlwimmer, T. Pietsch, G. Reifenberger, M. Weller, R. G. Weber, M. Loeffler

Help
help Submitter
Activity

Views: 1680

Created: 6th May 2019 at 12:56

Last updated: 7th Dec 2021 at 17:58

help Tags

This item has not yet been tagged.

help Attributions

None

Related items

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies