Ontological representation, classification and data-driven computing of phenotypes.

Abstract:

BACKGROUND: The successful determination and analysis of phenotypes plays a key role in the diagnostic process, the evaluation of risk factors and the recruitment of participants for clinical and epidemiological studies. The development of computable phenotype algorithms to solve these tasks is a challenging problem, caused by various reasons. Firstly, the term 'phenotype' has no generally agreed definition and its meaning depends on context. Secondly, the phenotypes are most commonly specified as non-computable descriptive documents. Recent attempts have shown that ontologies are a suitable way to handle phenotypes and that they can support clinical research and decision making. The SMITH Consortium is dedicated to rapidly establish an integrative medical informatics framework to provide physicians with the best available data and knowledge and enable innovative use of healthcare data for research and treatment optimisation. In the context of a methodological use case 'phenotype pipeline' (PheP), a technology to automatically generate phenotype classifications and annotations based on electronic health records (EHR) is developed. A large series of phenotype algorithms will be implemented. This implies that for each algorithm a classification scheme and its input variables have to be defined. Furthermore, a phenotype engine is required to evaluate and execute developed algorithms. RESULTS: In this article, we present a Core Ontology of Phenotypes (COP) and the software Phenotype Manager (PhenoMan), which implements a novel ontology-based method to model, classify and compute phenotypes from already available data. Our solution includes an enhanced iterative reasoning process combining classification tasks with mathematical calculations at runtime. The ontology as well as the reasoning method were successfully evaluated with selected phenotypes including SOFA score, socio-economic status, body surface area and WHO BMI classification based on available medical data. CONCLUSIONS: We developed a novel ontology-based method to model phenotypes of living beings with the aim of automated phenotype reasoning based on available data. This new approach can be used in clinical context, e.g., for supporting the diagnostic process, evaluating risk factors, and recruiting appropriate participants for clinical and epidemiological studies.

PubMed ID: 33349245

Projects: LHA - Leipzig Health Atlas, Onto-Med Research Group, SMITH - Smart Medical Information Technology for Healthcare

Publication type: Journal article

Journal: J Biomed Semantics

Human Diseases: No Human Disease specified

Citation: J Biomed Semantics. 2020 Dec 21;11(1):15. doi: 10.1186/s13326-020-00230-0.

Date Published: 21st Dec 2020

Registered Mode: by PubMed ID

Help
help Submitter
Activity

Views: 559

Created: 2nd Jun 2021 at 10:02

Last updated: 7th Dec 2021 at 17:58

help Attributions

None

Related items

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies