Publications

11 Publications visible to you, out of a total of 11

Abstract (Expand)

Background: Activation of telomere maintenance mechanisms (TMMs) is a hallmark of most cancers, and is required to prevent genome instability and to establish cellular immortality through reconstitution of capping of chromosome ends. TMM depends on the cancer type. Comparative studies linking tumor biology and TMM have potential impact for evaluating cancer onset and development. Methods: We have studied alterations of telomere length, their sequence composition and transcriptional regulation in mismatch repair deficient colorectal cancers arising in Lynch syndrome (LS-CRC) and microsatellite instable (MSI) sporadic CRC (MSI s-CRC), and for comparison, in microsatellite stable (MSS) s-CRC and in benign colon mucosa. Our study applied bioinformatics analysis of whole genome DNA and RNA sequencing data and a pathway model to study telomere length alterations and the potential effect of the "classical" telomerase (TEL-) and alternative (ALT-) TMM using transcriptomic signatures. Results: We have found progressive decrease of mean telomere length in all cancer subtypes compared with reference systems. Our results support the view that telomere attrition is an early event in tumorigenesis. TMM gets activated in all tumors studied due to concerted overexpression of a large fraction of genes with direct relation to telomere function, where only a very small fraction of them showed recurrent mutations. TEL-related transcriptional state was dominating in all CRC subtypes, showing, however, subtype-specific activation patterns; while contribution of the ALT-TMM was slightly more prominent in the hypermutated MSI s-CRC and LS-CRC. TEL-TMM is mainly activated by over-expression of DKC1 and/or TERT genes and their interaction partners, where DKC1 is more prominent in MSS than in MSI s-CRC and can serve as a transcriptomic marker of TMM activity. Conclusions: Our results suggest that transcriptional patterns are indicative for TMM pathway activation with subtle differences between TEL and ALT mechanisms in a CRC subtype-specific fashion. Sequencing data potentially provide a suited measure to study alterations of telomere length and of underlying transcriptional regulation. Further studies are needed to improve this method.

Authors: L. Nersisyan, L. Hopp, H. Loeffler-Wirth, J. Galle, M. Loeffler, A. Arakelyan, H. Binder

Date Published: 22nd Nov 2019

Publication Type: Not specified

Human Diseases: cancer

Abstract (Expand)

BACKGROUND: Thrombocytopenia is a major side-effect of cytotoxic cancer therapies. The aim of precision medicine is to develop therapy modifications accounting for the individual's risk. METHODOLOGY/PRINCIPLE FINDINGS: To solve this task, we develop an individualized bio-mechanistic model of the dynamics of bone marrow thrombopoiesis, circulating platelets and therapy effects thereon. Comprehensive biological knowledge regarding cell differentiation, amplification, apoptosis rates, transition times and corresponding regulations are translated into ordinary differential equations. A model of osteoblast/osteoclast interactions was incorporated to mechanistically describe bone marrow support of quiescent cell stages. Thrombopoietin (TPO) as a major regulator is explicitly modelled including pharmacokinetics and-dynamics of TPO injections. Effects of cytotoxic drugs are modelled by transient depletions of proliferating cells. To calibrate the model, we used population data from the literature and close-meshed individual data of N = 135 high-grade non-Hodgkin's lymphoma patients treated with CHOP-like chemotherapies. To limit the number of free parameters, several parsimony assumptions were derived from biological data and tested via Likelihood methods. Heterogeneity of patients was explained by a few model parameters. The over-fitting issue of individual parameter estimation was successfully dealt with a virtual participation of each patient in population-based experiments. The model qualitatively and quantitatively explains a number of biological observations such as the role of osteoblasts in explaining long-term toxic effects, megakaryocyte-mediated feedback on stem cells, bi-phasic stimulation of thrombopoiesis by TPO, dynamics of megakaryocyte ploidies and non-exponential platelet degradation. Almost all individual time series could be described with high precision. We demonstrated how the model can be used to provide predictions regarding individual therapy adaptations. CONCLUSIONS: We propose a mechanistic thrombopoiesis model of unprecedented comprehensiveness in both, biological mechanisms considered and experimental data sets explained. Our innovative method of parameter estimation allows robust determinations of individual parameter settings facilitating the development of individual treatment adaptations during chemotherapy.

Authors: Y. Kheifetz, M. Scholz

Date Published: 7th Mar 2019

Publication Type: Not specified

Human Diseases: blood platelet disease

Abstract (Expand)

We analyzed the blood transcriptome of sepsis framed within community-acquired pneumonia (CAP) and characterized its molecular and cellular heterogeneity in terms of functional modules of co-regulated genes with impact for the underlying pathophysiological mechanisms. Our results showed that CAP severity is associated with immune suppression owing to T-cell exhaustion and HLA and chemokine receptor deactivation, endotoxin tolerance, macrophage polarization, and metabolic conversion from oxidative phosphorylation to glycolysis. We also found footprints of host's response to viruses and bacteria, altered levels of mRNA from erythrocytes and platelets indicating coagulopathy that parallel severity of sepsis and survival. Finally, our data demonstrated chromatin re-modeling associated with extensive transcriptional deregulation of chromatin modifying enzymes, which suggests the extensive changes of DNA methylation with potential impact for marker selection and functional characterization. Based on the molecular footprints identified, we propose a novel stratification of CAP cases into six groups differing in the transcriptomic scores of CAP severity, interferon response, and erythrocyte mRNA expression with impact for prognosis. Our analysis increases the resolution of transcriptomic footprints of CAP and reveals opportunities for selecting sets of transcriptomic markers with impact for translation of omics research in terms of patient stratification schemes and sets of signature genes.

Authors: L. Hopp, H. Loeffler-Wirth, L. Nersisyan, A. Arakelyan, H. Binder

Date Published: 2nd Aug 2018

Publication Type: Not specified

Human Diseases: disease by infectious agent, pneumonia

Abstract (Expand)

Background: Thrombocytopenia is a major side-effect of cytotoxic cancer therapies. The aim of precision medicine is to develop therapy modifications accounting for the individual’s risk. Methodology/Principle Findings: To solve this task, we develop an individualized bio-mechanistic model of the dynamics of bone marrow thrombopoiesis, circulating platelets and therapy effects thereon. Comprehensive biological knowledge regarding cell differentiation, amplification, apoptosis rates, transition times and corresponding regulations are translated into ordinary differential equations. A model of osteoblast/osteoclast interactions was incorporated to mechanistically describe bone marrow support of quiescent cell stages. Thrombopoietin (TPO) as a major regulator is explicitly modelled including pharmacokinetics and –dynamics of TPO injections. Effects of cytotoxic drugs are modelled by transient depletions of proliferating cells. To calibrate the model, we used population data from the literature and close-meshed individual data of N=135 high-grade non-Hodgkin’s lymphoma patients treated with CHOP-like chemotherapies. To limit the number of free parameters, several parsimony assumptions were derived from biological data and tested via Likelihood methods. Heterogeneity of patients was explained by a few model parameters. The over-fitting issue of individual parameter estimation was successfully dealt with a virtual participation of each patient in population-based experiments. The model qualitatively and quantitatively explains a number of biological observations such as the role of osteoblasts in explaining long-term toxic effects, megakaryocyte-mediated feedback on stem cells, bi-phasic stimulation of thrombopoiesis by TPO, dynamics of megakaryocyte ploidies and non-exponential platelet degradation. Almost all individual time series could be described with high precision. We demonstrated how the model can be used to provide predictions regarding individual therapy adaptations. Conclusions: We propose a mechanistic thrombopoiesis model of unprecedented comprehensiveness in both, biological mechanisms considered and experimental data sets explained. Our innovative method of parameter estimation allows robust determinations of individual parameter settings facilitating the development of individual treatment adaptations during chemotherapy.

Authors: Y. Kheifetz, Markus Scholz, Markus Löffler

Date Published: 9th Jun 2017

Publication Type: Not specified

Human Diseases: thrombocytopenia

Abstract (Expand)

MOTIVATION: Comprehensive analysis of genome-wide molecular data challenges bioinformatics methodology in terms of intuitive visualization with single-sample resolution, biomarker selection, functional information mining and highly granular stratification of sample classes. oposSOM combines those functionalities making use of a comprehensive analysis and visualization strategy based on self-organizing maps (SOM) machine learning which we call 'high-dimensional data portraying'. The method was successfully applied in a series of studies using mostly transcriptome data but also data of other OMICs realms. AVAILABILITY AND IMPLEMENTATION: oposSOM is now publicly available as Bioconductor R package. CONTACT: wirth@izbi.uni-leipzig.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Authors: H. Loffler-Wirth, M. Kalcher, H. Binder

Date Published: 1st Oct 2015

Publication Type: Not specified

Abstract (Expand)

BACKGROUND: Haematotoxicity of conventional chemotherapies often results in delays of treatment or reduction of chemotherapy dose. To ameliorate these side-effects, patients are routinely treated with blood transfusions or haematopoietic growth factors such as erythropoietin (EPO) or granulocyte colony-stimulating factor (G-CSF). For the latter ones, pharmaceutical derivatives are available, which differ in absorption kinetics, pharmacokinetic and -dynamic properties. Due to the complex interaction of cytotoxic effects of chemotherapy and the stimulating effects of different growth factor derivatives, optimal treatment is a non-trivial task. In the past, we developed mathematical models of thrombopoiesis, granulopoiesis and erythropoiesis under chemotherapy and growth-factor applications which can be used to perform clinically relevant predictions regarding the feasibility of chemotherapy schedules and cytopenia prophylaxis with haematopoietic growth factors. However, interactions of lineages and growth-factors were ignored so far. RESULTS: To close this gap, we constructed a hybrid model of human granulopoiesis and erythropoiesis under conventional chemotherapy, G-CSF and EPO applications. This was achieved by combining our single lineage models of human erythropoiesis and granulopoiesis with a common stem cell model. G-CSF effects on erythropoiesis were also implemented. Pharmacodynamic models are based on ordinary differential equations describing proliferation and maturation of haematopoietic cells. The system is regulated by feedback loops partly mediated by endogenous and exogenous EPO and G-CSF. Chemotherapy is modelled by depletion of cells. Unknown model parameters were determined by fitting the model predictions to time series data of blood counts and cytokine profiles. Data were extracted from literature or received from cooperating clinical study groups. Our model explains dynamics of mature blood cells and cytokines after growth-factor applications in healthy volunteers. Moreover, we modelled 15 different chemotherapeutic drugs by estimating their bone marrow toxicity. Taking into account different growth-factor schedules, this adds up to 33 different chemotherapy regimens explained by the model. CONCLUSIONS: We conclude that we established a comprehensive biomathematical model to explain the dynamics of granulopoiesis and erythropoiesis under combined chemotherapy, G-CSF, and EPO applications. We demonstrate how it can be used to make predictions regarding haematotoxicity of yet untested chemotherapy and growth-factor schedules.

Authors: S. Schirm, C. Engel, M. Loeffler, M. Scholz

Date Published: 26th May 2014

Publication Type: Not specified

Human Diseases: leukemia, anemia

Abstract (Expand)

Self-organizing maps (SOM) portray molecular phenotypes with individual resolution. We present an analysis pipeline based on SOM machine learning which allows the comprehensive study of large scale clinical data. The potency of the method is demonstrated in selected applications studying the diversity of gene expression in Glioblastoma Multiforme (GBM) and prostate cancer progression. Our method characterizes relationships between the samples, disentangles the expression patterns into well separated groups of co-regulated genes, extracts their functional contexts using enrichment techniques, and enables the detection of contaminations and outliers in the samples. We found that the four GBM subtypes can be divided into two “localized” and two “intermediate” ones. The localized subtypes are characterized by the antagonistic activation of processes related to immune response and cell division, commonly observed also in other cancers. In contrast, each of the “intermediate” subtypes forms a heterogeneous continuum of expression states linking the “localized” subtypes. Both “intermediate” subtypes are characterized by distinct expression patterns related to translational activity and innate immunity as well as nervous tissue and cell function. We show that SOM portraits provide a comprehensive framework for the description of the diversity of expression landscapes using concepts of molecular function.

Authors: Lydia Hopp, Henry Löffler-Wirth, M. Fasold, Hans Binder

Date Published: 27th Jan 2014

Publication Type: Not specified

Human Diseases: brain glioma, prostate cancer

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies