Publications

959 Publications visible to you, out of a total of 959

Abstract (Expand)

Prognostic relevant pathways of leukocyte involvement in human myocardial ischemic-reperfusion injury are largely unknown. We enrolled 136 patients with ST-elevation myocardial infarction (STEMI) after primary angioplasty within 12 h after onset of symptoms. Following reperfusion, whole blood was collected within a median time interval of 20 h (interquartile range: 15-25 h) for genome-wide gene expression analysis. Subsequent CMR scans were performed using a standard protocol to determine infarct size (IS), area at risk (AAR), myocardial salvage index (MSI) and the extent of late microvascular obstruction (lateMO). We found 398 genes associated with lateMO and two genes with IS. Neither AAR, nor MSI showed significant correlations with gene expression. Genes correlating with lateMO were strongly related to several canonical pathways, including positive regulation of T-cell activation (p = 3.44 x 10(-5)), and regulation of inflammatory response (p = 1.86 x 10(-3)). Network analysis of multiple gene expression alterations associated with larger lateMO identified the following functional consequences: facilitated utilisation and decreased concentration of free fatty acid, repressed cell differentiation, enhanced phagocyte movement, increased cell death, vascular disease and compensatory vasculogenesis. In conclusion, the extent of lateMO after acute, reperfused STEMI correlated with altered activation of multiple genes related to fatty acid utilisation, lymphocyte differentiation, phagocyte mobilisation, cell survival, and vascular dysfunction.

Authors: A. Teren, H. Kirsten, F. Beutner, M. Scholz, L. M. Holdt, D. Teupser, M. Gutberlet, J. Thiery, G. Schuler, I. Eitel

Date Published: 3rd Feb 2017

Publication Type: Journal article

Human Diseases: myocardial infarction

Abstract (Expand)

The LIFE Child study is a large population-based longitudinal childhood cohort study conducted in the city of Leipzig, Germany. As a part of LIFE, a research project conducted at the Leipzig Research Center for Civilization Diseases, it aims to monitor healthy child development from birth to adulthood and to understand the development of lifestyle diseases such as obesity. The study consists of three interrelated cohorts; the birth cohort, the health cohort, and the obesity cohort. Depending on age and cohort, the comprehensive study program comprises different medical, psychological, and sociodemographic assessments as well as the collection of biological samples. Optimal data acquisition, process management, and data analysis are guaranteed by a professional team of physicians, certified study assistants, quality managers, scientists and statisticians. Due to the high popularity of the study, more than 3000 children have already participated until the end of 2015, and two-thirds of them participate continuously. The large quantity of acquired data allows LIFE Child to gain profound knowledge on the development of children growing up in the twenty-first century. This article reports the number of available and analyzable data and demonstrates the high relevance and potential of the study.

Authors: T. Poulain, R. Baber, M. Vogel, D. Pietzner, T. Kirsten, A. Jurkutat, A. Hiemisch, A. Hilbert, J. Kratzsch, J. Thiery, M. Fuchs, C. Hirsch, F. G. Rauscher, M. Loeffler, A. Korner, M. Nuchter, W. Kiess

Date Published: 2nd Feb 2017

Publication Type: Journal article

Abstract (Expand)

A novel method for the automated detection of the outer choroid boundary within spectral-domain optical coherence tomography image data, based on an image model within the space of functions of bounded variation and the application of quadratic measure filters, is presented. The same method is used for the segmentation of retinal layer boundaries and proves to be suitable even for data generated without special imaging modes and moderate line averaging. Based on the segmentations, an automated determination of the central fovea region and choroidal thickness measurements for this and two adjacent 1-mm regions are provided. The quality of the method is assessed by comparison with manual delineations performed by five trained graders. The study is based on data from 50 children of the ages 8 to 13 that were obtained in the framework of the LIFE Child study at Leipzig University.

Authors: M. Wagner, P. Scheibe, M. Francke, B. Zimmerling, K. Frey, M. Vogel, S. Luckhaus, P. Wiedemann, W. Kiess, F. G. Rauscher

Date Published: 1st Feb 2017

Publication Type: Journal article

Abstract (Expand)

OBJECTIVE/METHODS: DNA methylation plays an important role in obesity and related metabolic complications. We examined genome-wide DNA promoter methylation along with mRNA profiles in paired samples of human subcutaneous adipose tissue (SAT) and omental visceral adipose tissue (OVAT) from non-obese vs. obese individuals. RESULTS: We identified negatively correlated methylation and expression of several obesity-associated genes in our discovery dataset and in silico replicated ETV6 in two independent cohorts. Further, we identified six adipose tissue depot-specific genes (HAND2, HOXC6, PPARG, SORBS2, CD36, and CLDN1). The effects were further supported in additional independent cohorts. Our top hits might play a role in adipogenesis and differentiation, obesity, lipid metabolism, and adipose tissue expandability. Finally, we show that in vitro methylation of SORBS2 directly represses gene expression. CONCLUSIONS: Taken together, our data show distinct tissue specific epigenetic alterations which associate with obesity.

Authors: M. Keller, L. Hopp, X. Liu, T. Wohland, K. Rohde, R. Cancello, M. Klos, K. Bacos, M. Kern, F. Eichelmann, A. Dietrich, M. R. Schon, D. Gartner, T. Lohmann, M. Dressler, M. Stumvoll, P. Kovacs, A. M. DiBlasio, C. Ling, H. Binder, M. Bluher, Y. Bottcher

Date Published: 27th Jan 2017

Publication Type: Not specified

Human Diseases: obesity

Abstract (Expand)

PURPOSE Body surface area is a physiological quantity relevant for many medical applications. In clinical practice, it is determined by empirical formulae. 3D laser-based anthropometry provides an easyy and effective way to measure body surface area but is not ubiquitously available. We used data from laser-based anthropometry from a population-based study to assess validity of published and commonly used empirical formulae. METHODS We performed a large population-based study on adults collecting classical anthropometric measurements and 3D body surface assessments (N = 1435). We determined reliability of the 3D body surface assessment and validity of 18 different empirical formulae proposed in the literature. The performance of these formulae is studied in subsets of sex and BMI. Finally, improvements of parameter settings of formulae and adjustments for sex and BMI were considered. RESULTS 3D body surface measurements show excellent intra- and inter-rater reliability of 0.998 (overall concordance correlation coefficient, OCCC was used as measure of agreement). Empirical formulae of Fujimoto and Watanabe, Shuter and Aslani and Sendroy and Cecchini performed best with excellent concordance with OCCC \textgreater 0.949 even in subgroups of sex and BMI. Re-parametrization of formulae and adjustment for sex and BMI slightly improved results. CONCLUSION In adults, 3D laser-based body surface assessment is a reliable alternative to estimation by empirical formulae. However, there are empirical formulae showing excellent results even in subgroups of sex and BMI with only little room for improvement.

Authors: Andreas Kuehnapfel, Peter Ahnert, Markus Loeffler, Markus Scholz

Date Published: 27th Jan 2017

Publication Type: Journal article

Abstract (Expand)

Recent technological advances in single-cell genomics make it possible to analyze cellular heterogeneity of tumor samples. Here, we applied single-cell RNA-seq to measure the transcriptomes of 307 single cells cultured from three biopsies of three different patients with a BRAF/NRAS wild type, BRAF mutant/NRAS wild type and BRAF wild type/NRAS mutant melanoma metastasis, respectively. Analysis based on self-organizing maps identified sub-populations defined by multiple gene expression modules involved in proliferation, oxidative phosphorylation, pigmentation and cellular stroma. Gene expression modules had prognostic relevance when compared with gene expression data from published melanoma samples and patient survival data. We surveyed kinome expression patterns across sub-populations of the BRAF/NRAS wild type sample and found that CDK4 and CDK2 were consistently highly expressed in the majority of cells, suggesting that these kinases might be involved in melanoma progression. Treatment of cells with the CDK4 inhibitor palbociclib restricted cell proliferation to a similar, and in some cases greater, extent than MAPK inhibitors. Finally, we identified a low abundant sub-population in this sample that highly expressed a module containing ABC transporter ABCB5, surface markers CD271 and CD133, and multiple aldehyde dehydrogenases (ALDHs). Patient-derived cultures of the BRAF mutant/NRAS wild type and BRAF wild type/NRAS mutant metastases showed more homogeneous single-cell gene expression patterns with gene expression modules for proliferation and ABC transporters. Taken together, our results describe an intertumor and intratumor heterogeneity in melanoma short-term cultures which might be relevant for patient survival, and suggest promising targets for new treatment approaches in melanoma therapy.

Authors: T. Gerber, E. Willscher, H. Loeffler-Wirth, L. Hopp, D. Schadendorf, M. Schartl, U. Anderegg, G. Camp, B. Treutlein, H. Binder, M. Kunz

Date Published: 3rd Jan 2017

Publication Type: Not specified

Human Diseases: melanoma

Abstract (Expand)

Background and objectives: Obesity has been associated with increased risk of dementia. Grey and white matter (WM) of the brain are commonly used as biomarkers for early detection of dementia. However, considering WM, available neuroimaging studies had mainly small sample size and yielded less conclusive results (Kullmann et al., 2015). Recently, a positive correlation between obesity and fractional anisotropy (FA) in a middle age group was reported (Birdsill et al. 2017). Furthermore, obesity is related to many medical problems such as diabetes and hypertension. Diabetes and hypertension were found to be correlated with brain structures independently (de Leeuw et al., 2002; Weinstein et al., 2015). Yet, studies rarely investigated non-lesion WM microstructure and its association with diabetes and blood pressure. Therefore we aim to investigate the relation between abdominal obesity, diabetes, blood pressure and WM microstructural variability in a large cohort of community-dwelling healthy adults. Methods: The sample included dementia-free participants (mean age 55 ± 16 years; 50.7% women) of the LIFE cohort with brain MRI scans (n = 1255). WM microstructure was measured with diffusion tensor imaging (DTI). Mean FA was derived from the individual WM skeleton processed by tract-based-spatial-statistic method. Linear regression models were used to assess the relationships between diabetes, blood pressure, waist to hip ratio (WHR) and DTI parameters. Adjustments were made for age, sex, education and Apoe4. Results: The preliminary result indicated diabetes, systolic blood pressure and WHR were independently associated with lower FA, and diabetes explained the most variance besides age. Subgroup analysis revealed both systolic blood pressure and WHR were negatively associated with mean FA in the non-diabetes group (n=1101). Conclusions: The preliminary result of our study indicates that diabetes accelerated brain aging on directional diffusion of WM. Abdominal fat and blood pressure were associated with WM variabilities independently from age, sex and diabetes. With subsequent analysis of additional DTI measures, blood parameters, WM hyperintensity maps and voxel-based microstructural WM “integrity”, we aim to further characterize the associations between obesity, diabetes, blood pressure and WM microstructure. This will contribute to the existing literature and help to disentangle the underlying mechanism.

Authors: Rui Zhang, Frauke Beyer, L. Lampe, T. Luck, S. G. Riedel-Heller, M. Stumvoll, Markus Löffler, M. L. Schroeter, A. Villringer, A. V. Witte

Date Published: 2017

Publication Type: Not specified

Human Diseases: diabetes mellitus, obesity, hypertension

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies