Human brain arousal in the resting state: a genome-wide association study

Abstract:

Arousal affects cognition, emotion, and behavior and has been implicated in the etiology of psychiatric disorders. Although environmental conditions substantially contribute to the level of arousal, stable interindividual characteristics are well-established and a genetic basis has been suggested. Here we investigated the molecular genetics of brain arousal in the resting state by conducting a genome-wide association study (GWAS). We selected N = 1877 participants from the population-based LIFE-Adult cohort. Participants underwent a 20-min eyes-closed resting state EEG, which was analyzed using the computerized VIGALL 2.1 (Vigilance Algorithm Leipzig). At the SNP-level, GWAS analyses revealed no genome-wide significant locus (p \textless 5E-8), although seven loci were suggestive (p \textless 1E-6). The strongest hit was an expression quantitative trait locus (eQTL) of TMEM159 (lead-SNP: rs79472635, p = 5.49E-8). Importantly, at the gene-level, GWAS analyses revealed significant evidence for TMEM159 (p = 0.013, Bonferroni-corrected). By mapping our SNPs to the GWAS results from the Psychiatric Genomics Consortium, we found that all corresponding markers of TMEM159 showed nominally significant associations with Major Depressive Disorder (MDD; 0.006 ≤ p ≤ 0.011). More specifically, variants associated with high arousal levels have previously been linked to an increased risk for MDD. In line with this, the MetaXcan database suggests increased expression levels of TMEM159 in MDD, as well as Autism Spectrum Disorder, and Alzheimer’s Disease. Furthermore, our pathway analyses provided evidence for a role of sodium/calcium exchangers in resting state arousal. In conclusion, the present GWAS identifies TMEM159 as a novel candidate gene which may modulate the risk for psychiatric disorders through arousal mechanisms. Our results also encourage the elaboration of the previously reported interrelations between ion-channel modulators, sleep-wake behavior, and psychiatric disorders.   Arousal affects cognition, emotion, and behavior and has been implicated in the etiology of psychiatric disorders. Although environmental conditions substantially contribute to the level of arousal, stable interindividual characteristics are well-established and a genetic basis has been suggested. Here we investigated the molecular genetics of brain arousal in the resting state by conducting a genome-wide association study (GWAS). We selected N = 1877 participants from the population-based LIFE-Adult cohort. Participants underwent a 20-min eyes-closed resting state EEG, which was analyzed using the computerized VIGALL 2.1 (Vigilance Algorithm Leipzig). At the SNP-level, GWAS analyses revealed no genome-wide significant locus (p \textless 5E-8), although seven loci were suggestive (p \textless 1E-6). The strongest hit was an expression quantitative trait locus (eQTL) of TMEM159 (lead-SNP: rs79472635, p = 5.49E-8). Importantly, at the gene-level, GWAS analyses revealed significant evidence for TMEM159 (p = 0.013, Bonferroni-corrected). By mapping our SNPs to the GWAS results from the Psychiatric Genomics Consortium, we found that all corresponding markers of TMEM159 showed nominally significant associations with Major Depressive Disorder (MDD; 0.006 ≤ p ≤ 0.011). More specifically, variants associated with high arousal levels have previously been linked to an increased risk for MDD. In line with this, the MetaXcan database suggests increased expression levels of TMEM159 in MDD, as well as Autism Spectrum Disorder, and Alzheimer’s Disease. Furthermore, our pathway analyses provided evidence for a role of sodium/calcium exchangers in resting state arousal. In conclusion, the present GWAS identifies TMEM159 as a novel candidate gene which may modulate the risk for psychiatric disorders through arousal mechanisms. Our results also encourage the elaboration of the previously reported interrelations between ion-channel modulators, sleep-wake behavior, and psychiatric disorders. // Arousal affects cognition, emotion, and behavior and has been implicated in the etiology of psychiatric disorders. Although environmental conditions substantially contribute to the level of arousal, stable interindividual characteristics are well-established and a genetic basis has been suggested. Here we investigated the molecular genetics of brain arousal in the resting state by conducting a genome-wide association study (GWAS). We selected N = 1877 participants from the population-based LIFE-Adult cohort. Participants underwent a 20-min eyes-closed resting state EEG, which was analyzed using the computerized VIGALL 2.1 (Vigilance Algorithm Leipzig). At the SNP-level, GWAS analyses revealed no genome-wide significant locus (p \textless 5E-8), although seven loci were suggestive (p \textless 1E-6). The strongest hit was an expression quantitative trait locus (eQTL) of TMEM159 (lead-SNP: rs79472635, p = 5.49E-8). Importantly, at the gene-level, GWAS analyses revealed significant evidence for TMEM159 (p = 0.013, Bonferroni-corrected). By mapping our SNPs to the GWAS results from the Psychiatric Genomics Consortium, we found that all corresponding markers of TMEM159 showed nominally significant associations with Major Depressive Disorder (MDD; 0.006 ≤ p ≤ 0.011). More specifically, variants associated with high arousal levels have previously been linked to an increased risk for MDD. In line with this, the MetaXcan database suggests increased expression levels of TMEM159 in MDD, as well as Autism Spectrum Disorder, and Alzheimer’s Disease. Furthermore, our pathway analyses provided evidence for a role of sodium/calcium exchangers in resting state arousal. In conclusion, the present GWAS identifies TMEM159 as a novel candidate gene which may modulate the risk for psychiatric disorders through arousal mechanisms. Our results also encourage the elaboration of the previously reported interrelations between ion-channel modulators, sleep-wake behavior, and psychiatric disorders.

DOI: 10.1038/s41380-018-0052-2

Projects: Genetical Statistics and Systems Biology

Publication type: Journal article

Journal: Molecular psychiatry

Human Diseases: No Human Disease specified

Citation: Mol Psychiatry 24(11):1599-1609

Date Published: 1st Nov 2019

Registered Mode: imported from a bibtex file

Authors: Philippe Jawinski, Holger Kirsten, Christian Sander, Janek Spada, Christine Ulke, Jue Huang, Ralph Burkhardt, Markus Scholz, Tilman Hensch, Ulrich Hegerl

Help
help Submitter
Citation
Jawinski, P., Kirsten, H., Sander, C., Spada, J., Ulke, C., Huang, J., Burkhardt, R., Scholz, M., Hensch, T., & Hegerl, U. (2018). Human brain arousal in the resting state: a genome-wide association study. In Molecular Psychiatry (Vol. 24, Issue 11, pp. 1599–1609). Springer Science and Business Media LLC. https://doi.org/10.1038/s41380-018-0052-2
Activity

Views: 2209

Created: 15th Sep 2020 at 08:44

Last updated: 7th Dec 2021 at 17:58

help Tags

This item has not yet been tagged.

help Attributions

None

Related items

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies