Until now, it is impossible to identify a fatal traumatic brain injury (TBI) before post-mortem radiological investigations or an autopsy take place. It would be preferable to have an additional diagnostic tool like post-mortem biochemistry to get greater insight into the pathological pathways and survival times after sustaining TBI. Cerebrospinal fluid (CSF) and serum samples of 84 autopsy cases were collected from forensic autopsies with post-mortem intervals (PMI) of up to 148 h. The cases were categorized into a fatal TBI case group (n=42) and non-TBI controls (n=42). The values of glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF) and neutrophil gelatinase-associated lipocalin (NGAL) were analyzed by means of quantitative chemiluminescent multiplex immunoassays. The main results indicate that the usage of liquid samples with good macroscopic quality is more relevant for meaningful biomarker analyses than the length of the PMI. All three proteins were shown to differentiate TBI fatalities from the controls in CSF. In serum, only GFAP could be shown to be able to identify TBI cases. This study is the first approach to measure the three proteins together in CSF and serum in autopsy cases. Determined threshold values may differentiate between fatal TBI and control cases. The presented results emphasize the possible use of post-mortem biochemistry as a supplemental tool in everyday forensic routine.
Projects: Genetical Statistics and Systems Biology
Publication type: Journal article
Journal: Journal of neurotrauma
Human Diseases: No Human Disease specified
Citation: Journal of Neurotrauma 35(17):2044-2055
Date Published: 1st Sep 2018
Registered Mode: imported from a bibtex file
Views: 1160
Created: 15th Sep 2020 at 08:37
Last updated: 7th Dec 2021 at 17:58
This item has not yet been tagged.
None