Genetic association of objective sleep phenotypes with a functional polymorphism in the neuropeptide S receptor gene
BACKGROUND The neuropeptide S receptor (NPSR1) and its ligand neuropeptide S (NPS) have received increased attention in the last few years, as both establish a previously unknown system of neuromodulation. Animal research studies have suggested that NPS may be involved in arousal/wakefulness and may also have a crucial role in sleep regulation. The single nucleotide polymorphism (SNP) rs324981 in NPSR1 has begun to shed light on a function of the NPS-system in human sleep regulation. Due to an amino acid exchange, the T-allele leads to an increased sensitivity of the NPSR1. In the only genome-wide association study to date on circadian sleep parameters in humans, an association was found between rs324981 and regular bedtime. However, the sleep parameters in this study were only measured by self-rating. Therefore, our study aimed to replicate these findings using an objective measure of sleep. METHODS The study included n = 393 white subjects (62-79 years) who participated in an actigraphic assessment for determining sleep duration, rest duration, sleep onset, rest onset and sleep onset latency. Genotyping of the SNP rs324981 was performed using the TaqMan OpenArray System. RESULTS The genotype at rs324981 was not significantly associated with rest onset (bedtime) or sleep onset (p = .146 and p = .199, respectively). However, the SNP showed a significant effect on sleep- and rest duration (p = .007 and p = .003, respectively). Subjects that were homozygous for the minor T-allele had a significantly decreased sleep- and rest duration compared to A-allele carriers. CONCLUSION The results of this study indicate that the sleep pattern in humans is influenced by the NPS-system. However, the previously reported association between bedtime and rs324981 could not be confirmed. The current finding of decreased sleep duration in T/T allele carriers is in accordance with studies in rodents reporting similar results after NPS application.
DOI: 10.1371/journal.pone.0098789
Projects: Genetical Statistics and Systems Biology
Publication type: Journal article
Journal: PloS one
Human Diseases: No Human Disease specified
Citation: PLoS ONE 9(6):e98789
Date Published: 4th Jun 2014
Registered Mode: imported from a bibtex file
Views: 1002
Created: 14th Sep 2020 at 13:35
Last updated: 7th Dec 2021 at 17:58
This item has not yet been tagged.
None