Cell cycle, oncogenic and tumor suppressor pathways regulate numerous long and macro non-protein-coding RNAs

Abstract:

BACKGROUND\backslashr\backslashnThe genome is pervasively transcribed but most transcripts do not code for proteins, constituting non-protein coding RNAs. Despite increasing numbers of functional reports of individual long noncoding RNAs (lncRNAs), assessing the extent of functionality among the non-coding transcriptional output of mammalian cells remains intricate. In the protein coding world, transcripts differentially expressed in the context of processes essential for the survival of multicellular organisms have been instrumental for the discovery of functionally relevant proteins and their deregulation is frequently associated with diseases. We therefore systematically identify lncRNAs expressed differentially in response to oncologically relevant processes, cell-cycle, p53-, and STAT3 pathway, using tiling arrays.\backslashr\backslashnRESULTS\backslashr\backslashnWe find that up to 80% of the pathway-triggered transcriptional response can be non-coding. Among these we identify very large macroRNAs with pathway-specific expression patterns and demonstrate that these are likely continuous transcripts. MacroRNAs contain elements conserved in mammals and sauropsids, which in part exhibit conserved RNA secondary structure. Comparing evolutionary rates of a macroRNA to adjacent protein coding genes suggests a local action of the transcript. Finally, in different grades of astrocytoma, a tumor disease unrelated to the initially used cell lines, macroRNAs are differentially expressed.\backslashr\backslashnCONCLUSIONS\backslashr\backslashnIt has been shown previously that the majority of expressed non-ribosomal transcripts are non-coding. We now conclude that differential expression triggered by signaling pathways gives rise to a similar abundance of non-coding content. It is thus unlikely that the prevalence of non-coding transcripts in the cell is a trivial consequence of leaky or random transcription events. BACKGROUND The genome is pervasively transcribed but most transcripts do not code for proteins, constituting non-protein-coding RNAs. Despite increasing numbers of functional reports of individual long non-coding RNAs (lncRNAs), assessing the extent of functionality among the non-coding transcriptional output of mammalian cells remains intricate. In the protein-coding world, transcripts differentially expressed in the context of processes essential for the survival of multicellular organisms have been instrumental in the discovery of functionally relevant proteins and their deregulation is frequently associated with diseases. We therefore systematically identified lncRNAs expressed differentially in response to oncologically relevant processes and cell-cycle, p53 and STAT3 pathways, using tiling arrays. RESULTS We found that up to 80% of the pathway-triggered transcriptional responses are non-coding. Among these we identified very large macroRNAs with pathway-specific expression patterns and demonstrated that these are likely continuous transcripts. MacroRNAs contain elements conserved in mammals and sauropsids, which in part exhibit conserved RNA secondary structure. Comparing evolutionary rates of a macroRNA to adjacent protein-coding genes suggests a local action of the transcript. Finally, in different grades of astrocytoma, a tumor disease unrelated to the initially used cell lines, macroRNAs are differentially expressed. CONCLUSIONS It has been shown previously that the majority of expressed non-ribosomal transcripts are non-coding. We now conclude that differential expression triggered by signaling pathways gives rise to a similar abundance of non-coding content. It is thus unlikely that the prevalence of non-coding transcripts in the cell is a trivial consequence of leaky or random transcription events.

DOI: 10.1186/gb-2014-15-3-r48

Projects: Genetical Statistics and Systems Biology

Publication type: Journal article

Journal: Genome biology

Human Diseases: No Human Disease specified

Citation: Genome Biol 15(3):R48

Date Published: 2014

Registered Mode: imported from a bibtex file

Authors: Jörg Hackermüller, Kristin Reiche, Christian Otto, Nadine Hösler, Conny Blumert, Katja Brocke-Heidrich, Levin Böhlig, Anne Nitsche, Katharina Kasack, Peter Ahnert, Wolfgang Krupp, Kurt Engeland, Peter F. Stadler, Friedemann Horn

Help
help Submitter
Citation
Hackermüller, J., Reiche, K., Otto, C., Hösler, N., Blumert, C., Brocke-Heidrich, K., Böhlig, L., Nitsche, A., Kasack, K., Ahnert, P., Krupp, W., Engeland, K., Stadler, P. F., & Horn, F. (2014). Cell cycle, oncogenic and tumor suppressor pathways regulate numerous long and macro non-protein-coding RNAs. In Genome Biology (Vol. 15, Issue 3, p. R48). Springer Science and Business Media LLC. https://doi.org/10.1186/gb-2014-15-3-r48
Activity

Views: 995

Created: 14th Sep 2020 at 13:35

Last updated: 7th Dec 2021 at 17:58

help Tags

This item has not yet been tagged.

help Attributions

None

Related items

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies