Comparison of scoring methods for the detection of causal genes with or without rare variants

Abstract:

Rare causal variants are believed to significantly contribute to the genetic basis of common diseases or quantitative traits. Appropriate statistical methods are required to discover the highest possible number of disease-relevant variants in a genome-wide screening study. The publicly available Genetic Analysis Workshop 17 data set consists of 697 individuals and 24,487 genetic variants. It includes a simulated complex disease model with intermediate quantitative phenotypes. We compare four gene-wise scoring methods with respect to ranking of causal genes under variable allele frequency thresholds for collapsing of rare variants and considering whether or not rare variants were included. We also compare causal genes for which the ranks differ clearly between scoring methods regarding such characteristics as number and strength of causal variants. We corroborated our findings with additional simulations. We found that the maximum statistics method was superior in assigning high ranks to genes with a single strong causal variant. Hotelling’s T2 test was superior for genes with several independent causal variants. This was consistent for all phenotypes and was confirmed by single-gene analyses and additional simulations. The multivariate analysis performed similarly to Hotelling’s T2 test. The least absolute shrinkage and selection operator (LASSO) analysis was widely comparable with the maximum statistics method. We conclude that the maximum statistics method is a superior alternative to Hotelling’s T2 test if one expects only one independent causal variant per gene with a dominating effect. Such a variant could also be a supermarker derived by collapsing rare variants. Because the true nature of the genetic effect is unknown for real data, both methods need to be taken into consideration.

DOI: 10.1186/1753-6561-5-S9-S49

Projects: Genetical Statistics and Systems Biology

Publication type: Journal article

Journal: BMC proceedings

Human Diseases: No Human Disease specified

Citation: BMC Proc 5(S9),S49

Date Published: 1st Dec 2011

Registered Mode: imported from a bibtex file

Authors: Markus Scholz, Holger Kirsten

Help
help Submitter
Citation
Scholz, M., & Kirsten, H. (2011). Comparison of scoring methods for the detection of causal genes with or without rare variants. In BMC Proceedings (Vol. 5, Issue S9). Springer Science and Business Media LLC. https://doi.org/10.1186/1753-6561-5-s9-s49
Activity

Views: 1031

Created: 14th Sep 2020 at 13:13

Last updated: 7th Dec 2021 at 17:58

help Tags

This item has not yet been tagged.

help Attributions

None

Related items

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies