Publications

18 Publications matching the given criteria: (Clear all filters)

Abstract (Expand)

Purpose: The onset and progression of optic neuropathies like glaucoma often occurs asymmetrically between the two eyes of a patient. Interocular circumpapillary retinal nerve fiber layer thickness (cpRNFLT) differences could detect disease earlier. To apply such differences diagnostically, detailed location specific norms are necessary. Methods: Spectral-domain optical coherence tomography cpRNFLT circle scans from the population-based Leipzig Research Centre for Civilization Diseases–Adult study were selected. At each of the 768 radial scanning locations, normative interocular cpRNFLT difference distributions were calculated based on age and interocular radius difference. Results: A total of 8966 cpRNFLT scans of healthy eyes (4483 patients; 55% female; age range, 20–79 years) were selected. Global cpRNFLT average was 1.53 µm thicker in right eyes (P < 2.2 × 10–16). On 96% of the 768 locations, left minus right eye differences were significant (P < 0.05), varying between +11.6 µm (superonasal location) and −11.8 µm (nasal location). Increased age and difference in interocular scanning radii were associated with an increased mean and variance of interocular cpRNFLT difference at most retinal locations, apart from the area temporal to the inferior RNF bundle where cpRNFLT becomes more similar between eyes with age. Conclusions: We provide pointwise normative distributions of interocular cpRNFLT differences at an unprecedentedly high spatial resolution of 768 A-scans and reveal considerable location specific asymmetries as well as their associations with age and scanning radius differences between eyes. Translational Relevance: To facilitate clinical application, we implement these age- and radius-specific norms across all 768 locations in an open-source software to generate patient-specific normative color plots.

Authors: Neda Baniasadi, Franziska G. Rauscher, Dian Li, Mengyu Wang, Eun Young Choi, Hui Wang, Thomas Peschel, Kerstin Wirkner, Toralf Kirsten, Joachim Thiery, Christoph Engel, Markus Loeffler, Tobias Elze

Date Published: 3rd Aug 2020

Publication Type: Journal article

Abstract (Expand)

PURPOSE: To investigate the role of sex on retinal nerve fiber layer (RNFL) thickness at 768 circumpapillary locations based on OCT findings. DESIGN: Population-based cross-sectional study. PARTICIPANTS: We investigated 5646 eyes of 5646 healthy participants from the Leipzig Research Centre for Civilization Diseases (LIFE)-Adult Study of a predominantly white population. METHODS: All participants underwent standardized systemic assessments and ocular imaging. Circumpapillary RNFL (cRNFL) thickness was measured at 768 points equidistant from the optic nerve head using spectral-domain OCT (Spectralis; Heidelberg Engineering, Heidelberg, Germany). To control ocular magnification effects, the true scanning radius was estimated by scanning focus. Student t test was used to evaluate sex differences in cRNFL thickness globally and at each of the 768 locations. Multivariable linear regression and analysis of variance were used to evaluate individual contributions of various factors to cRNFL thickness variance. MAIN OUTCOME MEASURES: Difference in cRNFL thickness between males and females. RESULTS: Our population consisted of 54.8% females. The global cRNFL thickness was 1 mum thicker in females (P < 0.001). However, detailed analysis at each of the 768 locations revealed substantial location specificity of the sex effects, with RNFL thickness difference ranging from -9.98 to +8.00 mum. Females showed significantly thicker RNFLs in the temporal, superotemporal, nasal, inferonasal, and inferotemporal regions (43.6% of 768 locations), whereas males showed significantly thicker RNFLs in the superior region (13.2%). The results were similar after adjusting for age, body height, and scanning radius. The superotemporal and inferotemporal RNFL peaks shifted temporally in females by 2.4 degrees and 1.9 degrees , respectively. On regions with significant sex effects, sex explained more RNFL thickness variance than age, whereas the major peak locations and interpeak angle explained most of the RNFL thickness variance unexplained by sex. CONCLUSIONS: Substantial sex effects on cRNFL thickness were found at 56.8% of all 768 circumpapillary locations, with specific patterns for different sectors. Over large regions, sex was at least as important in explaining the cRNFL thickness variance as was age, which is well established to have a substantial impact on cRNFL thickness. Including sex in the cRNFL thickness norm could therefore improve glaucoma diagnosis and monitoring.

Authors: D. Li, F. G. Rauscher, E. Y. Choi, M. Wang, N. Baniasadi, K. Wirkner, T. Kirsten, J. Thiery, C. Engel, M. Loeffler, T. Elze

Date Published: 17th Nov 2019

Publication Type: Journal article

Abstract (Expand)

3D-body scanning anthropometry is a suitable method for characterization of physiological development of children and adolescents, and for understanding onset and progression of disorders like overweight and obesity. Here we present a novel body typing approach to describe and to interpret longitudinal 3D-body scanning data of more than 800 children and adolescents measured in up to four follow-ups in intervals of 1 year, referring to an age range between 6 and 18 years. We analyzed transitions between body types assigned to lower-, normal- and overweight participants upon development of children and adolescents. We found a virtually parallel development of the body types with only a few transitions between them. Body types of children and adolescents tend to conserve their weight category. 3D body scanning anthropometry in combination with body typing constitutes a novel option to investigate onset and progression of obesity in children.

Authors: H. Loeffler-Wirth, M. Vogel, T. Kirsten, F. Glock, T. Poulain, A. Korner, M. Loeffler, W. Kiess, H. Binder

Date Published: 14th Sep 2018

Publication Type: Not specified

Human Diseases: obesity

Abstract (Expand)

Optical coherence tomography (OCT) manufacturers graphically present circumpapillary retinal nerve fiber layer thickness (cpRNFLT) together with normative limits to support clinicians in diagnosing ophthalmic diseases. The impact of age on cpRNFLT is typically implemented by linear models. cpRNFLT is strongly location-specific, whereas previously published norms are typically restricted to coarse sectors and based on small populations. Furthermore, OCT devices neglect impacts of lens or eye size on the diameter of the cpRNFLT scan circle so that the diameter substantially varies over different eyes. We investigate the impact of age and scan diameter reported by Spectralis spectral-domain OCT on cpRNFLT in 5646 subjects with healthy eyes. We provide cpRNFLT by age and diameter at 768 angular locations. Age/diameter were significantly related to cpRNFLT on 89%/92% of the circle, respectively (pointwise linear regression), and to shifts in cpRNFLT peak locations. For subjects from age 42.1 onward but not below, increasing age significantly decreased scan diameter (r=-0.28, p<0.001), which suggests that pathological cpRNFLT thinning over time may be underestimated in elderly compared to younger subjects, as scan diameter decrease correlated with cpRNFLT increase. Our detailed numerical results may help to generate various correction models to improve diagnosing and monitoring optic neuropathies.

Authors: M. Wang, T. Elze, D. Li, N. Baniasadi, K. Wirkner, T. Kirsten, J. Thiery, M. Loeffler, C. Engel, F. G. Rauscher

Date Published: 25th Dec 2017

Publication Type: Journal article

Abstract (Expand)

Three-dimensional (3D-) body scanning of children and adolescents allows the detailed study of physiological development in terms of anthropometrical alterations which potentially provide early onset markers for obesity. Here, we present a systematic analysis of body scanning data of 2,700 urban children and adolescents in the age range between 5 and 18 years with the special aim to stratify the participants into distinct body shape types and to describe their change upon development. In a first step, we extracted a set of eight representative meta-measures from the data. Each of them collects a related group of anthropometrical features and changes specifically upon aging. In a second step we defined seven body types by clustering the meta-measures of all participants. These body types describe the body shapes in terms of three weight (lower, normal and overweight) and three age (young, medium and older) categories. For younger children (age of 5-10 years) we found a common 'early childhood body shape' which splits into three weight-dependent types for older children, with one or two years delay for boys. Our study shows that the concept of body types provides a reliable option for the anthropometric characterization of developing and aging populations.

Authors: H. Loeffler-Wirth, M. Vogel, T. Kirsten, F. Glock, T. Poulain, A. Korner, M. Loeffler, W. Kiess, H. Binder

Date Published: 21st Oct 2017

Publication Type: Not specified

Human Diseases: obesity

Abstract (Expand)

Clinical and epidemiological studies are commonly used in medical sciences. They typically collect data by using different input forms and information systems. Metadata describing input forms, database schemas and input systems are used for data integration but are typically distributed over different software tools; each uses portions of metadata, such as for loading (ETL), data presentation and analysis. In this paper, we describe an approach managing metadata centrally and consistently in a dedicated Metadata Repository (MDR). Metadata can be provided to different tools. Moreover, the MDR includes a matching component creating schema mappings as a prerequisite to integrate captured medical data. We describe the approach, the MDR infrastructure and provide algorithms for creating schema mappings. Finally, we show selected evaluation results. The MDR is fully operational and used to integrate data from a multitude of input forms and systems in the epidemiological study LIFE.

Authors: Toralf Kirsten, A. Kiel, M. Rühle, J.Wagner

Date Published: 2nd Mar 2017

Publication Type: Not specified

Abstract (Expand)

Prognostic relevant pathways of leukocyte involvement in human myocardial ischemic-reperfusion injury are largely unknown. We enrolled 136 patients with ST-elevation myocardial infarction (STEMI) after primary angioplasty within 12 h after onset of symptoms. Following reperfusion, whole blood was collected within a median time interval of 20 h (interquartile range: 15-25 h) for genome-wide gene expression analysis. Subsequent CMR scans were performed using a standard protocol to determine infarct size (IS), area at risk (AAR), myocardial salvage index (MSI) and the extent of late microvascular obstruction (lateMO). We found 398 genes associated with lateMO and two genes with IS. Neither AAR, nor MSI showed significant correlations with gene expression. Genes correlating with lateMO were strongly related to several canonical pathways, including positive regulation of T-cell activation (p = 3.44 x 10(-5)), and regulation of inflammatory response (p = 1.86 x 10(-3)). Network analysis of multiple gene expression alterations associated with larger lateMO identified the following functional consequences: facilitated utilisation and decreased concentration of free fatty acid, repressed cell differentiation, enhanced phagocyte movement, increased cell death, vascular disease and compensatory vasculogenesis. In conclusion, the extent of lateMO after acute, reperfused STEMI correlated with altered activation of multiple genes related to fatty acid utilisation, lymphocyte differentiation, phagocyte mobilisation, cell survival, and vascular dysfunction.

Authors: A. Teren, H. Kirsten, F. Beutner, M. Scholz, L. M. Holdt, D. Teupser, M. Gutberlet, J. Thiery, G. Schuler, I. Eitel

Date Published: 3rd Feb 2017

Publication Type: Journal article

Human Diseases: myocardial infarction

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies