Publications

14 Publications visible to you, out of a total of 14

Abstract (Expand)

BACKGROUND: Single-cell RNA sequencing (scRNA-seq) has been widely applied to dissect cellular heterogeneity in normal and diseased skin. Sebaceous glands, essential skin components with established functions in maintaining skin integrity and emerging roles in systemic energy metabolism, have been largely neglected in scRNA-seq studies. METHODS: Departing from mouse and human skin scRNA-seq datasets, we identified gene sets expressed especially in sebaceous glands with the open-source R-package oposSOM. RESULTS: The identified gene sets included sebaceous gland-typical genes as Scd3, Mgst1, Cidea, Awat2 and KRT7. Surprisingly, however, there was not a single overlap among the 100 highest, exclusively in sebaceous glands expressed transcripts in mouse and human samples. Notably, both species share a common core of only 25 transcripts, including mitochondrial and peroxisomal genes involved in fatty acid, amino acid, and glucose processing, thus highlighting the intense metabolic rate of this gland. CONCLUSIONS: This study highlights intrinsic differences in sebaceous lipid synthesis between mice and humans, and indicates an important role for peroxisomal processes in this context. Our data also provides attractive starting points for experimentally addressing novel candidates regulating sebaceous gland homeostasis.

Authors: T. Thalheim, M. R. Schneider

Date Published: 3rd Feb 2024

Publication Type: Journal article

Abstract (Expand)

BACKGROUND: The growing interest in the secondary use of electronic health record (EHR) data has increased the number of new data integration and data sharing infrastructures. The present work has been developed in the context of the German Medical Informatics Initiative, where 29 university hospitals agreed to the usage of the Health Level Seven Fast Healthcare Interoperability Resources (FHIR) standard for their newly established data integration centers. This standard is optimized to describe and exchange medical data but less suitable for standard statistical analysis which mostly requires tabular data formats. OBJECTIVES: The objective of this work is to establish a tool that makes FHIR data accessible for standard statistical analysis by providing means to retrieve and transform data from a FHIR server. The tool should be implemented in a programming environment known to most data analysts and offer functions with variable degrees of flexibility and automation catering to users with different levels of FHIR expertise. METHODS: We propose the fhircrackr framework, which allows downloading and flattening FHIR resources for data analysis. The framework supports different download and authentication protocols and gives the user full control over the data that is extracted from the FHIR resources and transformed into tables. We implemented it using the programming language R [1] and published it under the GPL-3 open source license. RESULTS: The framework was successfully applied to both publicly available test data and real-world data from several ongoing studies. While the processing of larger real-world data sets puts a considerable burden on computation time and memory consumption, those challenges can be attenuated with a number of suitable measures like parallelization and temporary storage mechanisms. CONCLUSION: The fhircrackr R package provides an open source solution within an environment that is familiar to most data scientists and helps overcome the practical challenges that still hamper the usage of EHR data for research.

Authors: J. Palm, F. A. Meineke, J. Przybilla, T. Peschel

Date Published: 25th Jan 2023

Publication Type: Journal article

Abstract (Expand)

BACKGROUND: Clinical trials, epidemiological studies, clinical registries, and other prospective research projects, together with patient care services, are main sources of data in the medical research domain. They serve often as a basis for secondary research in evidence-based medicine, prediction models for disease, and its progression. This data are often neither sufficiently described nor accessible. Related models are often not accessible as a functional program tool for interested users from the health care and biomedical domains. OBJECTIVE: The interdisciplinary project Leipzig Health Atlas (LHA) was developed to close this gap. LHA is an online platform that serves as a sustainable archive providing medical data, metadata, models, and novel phenotypes from clinical trials, epidemiological studies, and other medical research projects. METHODS: Data, models, and phenotypes are described by semantically rich metadata. The platform prefers to share data and models presented in original publications but is also open for nonpublished data. LHA provides and associates unique permanent identifiers for each dataset and model. Hence, the platform can be used to share prepared, quality-assured datasets and models while they are referenced in publications. All managed data, models, and phenotypes in LHA follow the FAIR principles, with public availability or restricted access for specific user groups. RESULTS: The LHA platform is in productive mode (https://www.health-atlas.de/). It is already used by a variety of clinical trial and research groups and is becoming increasingly popular also in the biomedical community. LHA is an integral part of the forthcoming initiative building a national research data infrastructure for health in Germany.

Authors: T. Kirsten, F. A. Meineke, H. Loeffler-Wirth, C. Beger, A. Uciteli, S. Staubert, M. Lobe, R. Hansel, F. G. Rauscher, J. Schuster, T. Peschel, H. Herre, J. Wagner, S. Zachariae, C. Engel, M. Scholz, E. Rahm, H. Binder, M. Loeffler

Date Published: 3rd Aug 2022

Publication Type: Journal article

Abstract (Expand)

Sharing data is of great importance for research in medical sciences. It is the basis for reproducibility and reuse of already generated outcomes in new projects and in new contexts. FAIR data principles are the basics for sharing data. The Leipzig Health Atlas (LHA) platform follows these principles and provides data, describing metadata, and models that have been implemented in novel software tools and are available as demonstrators. LHA reuses and extends three different major components that have been previously developed by other projects. The SEEK management platform is the foundation providing a repository for archiving, presenting and secure sharing a wide range of publication results, such as published reports, (bio)medical data as well as interactive models and tools. The LHA Data Portal manages study metadata and data allowing to search for data of interest. Finally, PhenoMan is an ontological framework for phenotype modelling. This paper describes the interrelation of these three components. In particular, we use the PhenoMan to, firstly, model and represent phenotypes within the LHA platform. Then, secondly, the ontological phenotype representation can be used to generate search queries that are executed by the LHA Data Portal. The PhenoMan generates the queries in a novel domain specific query language (SDQL), which is specific for data management systems based on CDISC ODM standard, such as the LHA Data Portal. Our approach was successfully applied to represent phenotypes in the Leipzig Health Atlas with the possibility to execute corresponding queries within the LHA Data Portal.

Authors: A. Uciteli, C. Beger, J. Wagner, A. Kiel, F. A. Meineke, S. Staubert, M. Lobe, R. Hansel, J. Schuster, T. Kirsten, H. Herre

Date Published: 24th May 2021

Publication Type: Journal article

Abstract (Expand)

Planning clinical studies to check medical hypotheses requires the specification of eligibility criteria in order to identify potential study participants. Electronically available patient data allows to support the recruitment of patients for studies. The Smart Medical Information Technology for Healthcare (SMITH) consortium aims to establish data integration centres to enable the innovative use of available healthcare data for research and treatment optimization. The data from the electronic health record of patients in the participating hospitals is integrated into a Health Data Storage based on the Fast Healthcare Interoperability Resources standard (FHIR), developed by HL7. In SMITH, FHIR Search is used to query the integrated data. An investigation has shown the advantages and disadvantages of using FHIR Search for specifying eligibility criteria. This paper presents an approach for modelling eligibility criteria as well as for generating and executing FHIR Search queries. Our solution is based on the Phenotype Manager, a general ontological phenotyping framework to model and calculate phenotypes using the Core Ontology of Phenotypes.

Authors: A. Uciteli, C. Beger, J. Wagner, T. Kirsten, F. A. Meineke, S. Staubert, M. Lobe, H. Herre

Date Published: 26th Apr 2021

Publication Type: Journal article

Abstract (Expand)

BACKGROUND: The successful determination and analysis of phenotypes plays a key role in the diagnostic process, the evaluation of risk factors and the recruitment of participants for clinical and epidemiological studies. The development of computable phenotype algorithms to solve these tasks is a challenging problem, caused by various reasons. Firstly, the term 'phenotype' has no generally agreed definition and its meaning depends on context. Secondly, the phenotypes are most commonly specified as non-computable descriptive documents. Recent attempts have shown that ontologies are a suitable way to handle phenotypes and that they can support clinical research and decision making. The SMITH Consortium is dedicated to rapidly establish an integrative medical informatics framework to provide physicians with the best available data and knowledge and enable innovative use of healthcare data for research and treatment optimisation. In the context of a methodological use case 'phenotype pipeline' (PheP), a technology to automatically generate phenotype classifications and annotations based on electronic health records (EHR) is developed. A large series of phenotype algorithms will be implemented. This implies that for each algorithm a classification scheme and its input variables have to be defined. Furthermore, a phenotype engine is required to evaluate and execute developed algorithms. RESULTS: In this article, we present a Core Ontology of Phenotypes (COP) and the software Phenotype Manager (PhenoMan), which implements a novel ontology-based method to model, classify and compute phenotypes from already available data. Our solution includes an enhanced iterative reasoning process combining classification tasks with mathematical calculations at runtime. The ontology as well as the reasoning method were successfully evaluated with selected phenotypes including SOFA score, socio-economic status, body surface area and WHO BMI classification based on available medical data. CONCLUSIONS: We developed a novel ontology-based method to model phenotypes of living beings with the aim of automated phenotype reasoning based on available data. This new approach can be used in clinical context, e.g., for supporting the diagnostic process, evaluating risk factors, and recruiting appropriate participants for clinical and epidemiological studies.

Authors: A. Uciteli, C. Beger, T. Kirsten, F. A. Meineke, H. Herre

Date Published: 21st Dec 2020

Publication Type: Journal article

Abstract (Expand)

Despite their young age, the FAIR principles are recognised as important guidelines for research data management. Their generic design, however, leaves much room for interpretation in domain-specific application. Based on practical experience in the operation of a data repository, this article addresses problems in FAIR provisioning of medical data for research purposes in the use case of the Leipzig Health Atlas project and shows necessary future developments.

Authors: M. Lobe, F. Matthies, S. Staubert, F. A. Meineke, A. Winter

Date Published: 16th Jun 2020

Publication Type: Journal article

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies