Publications

20 Publications matching the given criteria: (Clear all filters)

Abstract (Expand)

Abstract Background In recent years, data-driven medicine has gained increasing importance in terms of diagnosis, treatment, and research due to the exponential growth of health care data. However, data protection regulations prohibit data centralisation for analysis purposes because of potential privacy risks like the accidental disclosure of data to third parties. Therefore, alternative data usage policies, which comply with present privacy guidelines, are of particular interest. Objective We aim to enable analyses on sensitive patient data by simultaneously complying with local data protection regulations using an approach called the Personal Health Train (PHT), which is a paradigm that utilises distributed analytics (DA) methods. The main principle of the PHT is that the analytical task is brought to the data provider and the data instances remain in their original location. Methods In this work, we present our implementation of the PHT paradigm, which preserves the sovereignty and autonomy of the data providers and operates with a limited number of communication channels. We further conduct a DA use case on data stored in three different and distributed data providers. Results We show that our infrastructure enables the training of data models based on distributed data sources. Conclusion Our work presents the capabilities of DA infrastructures in the health care sector, which lower the regulatory obstacles of sharing patient data. We further demonstrate its ability to fuel medical science by making distributed data sets available for scientists or health care practitioners.

Authors: Sascha Welten, Yongli Mou, Laurenz Neumann, Mehrshad Jaberansary, Yeliz Yediel Ucer, Toralf Kirsten, Stefan Decker, Oya Beyan

Date Published: 1st Jun 2022

Publication Type: Journal article

Abstract (Expand)

Clinical research based on data from patient or study data management systems plays an important role in transferring basic findings into the daily practices of physicians. To support study recruitment, diagnostic processes, and risk factor evaluation, search queries for such management systems can be used. Typically, the query syntax as well as the underlying data structure vary greatly between different data management systems. This makes it difficult for domain experts (e.g., clinicians) to build and execute search queries. In this work, the Core Ontology of Phenotypes is used as a general model for phenotypic knowledge. This knowledge is required to create search queries that determine and classify individuals (e.g., patients or study participants) whose morphology, function, behaviour, or biochemical and physiological properties meet specific phenotype classes. A specific model describing a set of particular phenotype classes is called a Phenotype Specification Ontology. Such an ontology can be automatically converted to search queries on data management systems. The methods described have already been used successfully in several projects. Using ontologies to model phenotypic knowledge on patient or study data management systems is a viable approach. It allows clinicians to model from a domain perspective without knowing the actual data structure or query language.

Authors: Christoph Beger, Franz Matthies, Ralph Schäfermeier, Toralf Kirsten, Heinrich Herre, Alexandr Uciteli

Date Published: 1st May 2022

Publication Type: Journal article

Abstract (Expand)

The constant upward movement of data-driven medicine as a valuable option to enhance daily clinical practice has brought new challenges for data analysts to get access to valuable but sensitive data due to privacy considerations. One solution for most of these challenges are Distributed Analytics (DA) infrastructures, which are technologies fostering collaborations between healthcare institutions by establishing a privacy-preserving network for data sharing. However, in order to participate in such a network, a lot of technical and administrative prerequisites have to be made, which could pose bottlenecks and new obstacles for non-technical personnel during their deployment. We have identified three major problems in the current state-of-the-art. Namely, the missing compliance with FAIR data principles, the automation of processes, and the installation. In this work, we present a seamless on-boarding workflow based on a DA reference architecture for data sharing institutions to address these problems. The on-boarding service manages all technical configurations and necessities to reduce the deployment time. Our aim is to use well-established and conventional technologies to gain acceptance through enhanced ease of use. We evaluate our development with six institutions across Germany by conducting a DA study with open-source breast cancer data, which represents the second contribution of this work. We find that our on-boarding solution lowers technical barriers and efficiently deploys all necessary components and is, therefore, indeed an enabler for collaborative data sharing.

Authors: Sascha Welten, Lars Hempel, Masoud Abedi, Yongli Mou, Mehrshad Jaberansary, Laurenz Neumann, Sven Weber, Kais Tahar, Yeliz Ucer Yediel, Matthias Löbe, Stefan Decker, Oya Beyan, Toralf Kirsten

Date Published: 1st Apr 2022

Publication Type: Journal article

Abstract (Expand)

Sharing data is of great importance for research in medical sciences. It is the basis for reproducibility and reuse of already generated outcomes in new projects and in new contexts. FAIR data principles are the basics for sharing data. The Leipzig Health Atlas (LHA) platform follows these principles and provides data, describing metadata, and models that have been implemented in novel software tools and are available as demonstrators. LHA reuses and extends three different major components that have been previously developed by other projects. The SEEK management platform is the foundation providing a repository for archiving, presenting and secure sharing a wide range of publication results, such as published reports, (bio)medical data as well as interactive models and tools. The LHA Data Portal manages study metadata and data allowing to search for data of interest. Finally, PhenoMan is an ontological framework for phenotype modelling. This paper describes the interrelation of these three components. In particular, we use the PhenoMan to, firstly, model and represent phenotypes within the LHA platform. Then, secondly, the ontological phenotype representation can be used to generate search queries that are executed by the LHA Data Portal. The PhenoMan generates the queries in a novel domain specific query language (SDQL), which is specific for data management systems based on CDISC ODM standard, such as the LHA Data Portal. Our approach was successfully applied to represent phenotypes in the Leipzig Health Atlas with the possibility to execute corresponding queries within the LHA Data Portal.

Authors: A. Uciteli, C. Beger, J. Wagner, A. Kiel, F. A. Meineke, S. Staubert, M. Lobe, R. Hansel, J. Schuster, T. Kirsten, H. Herre

Date Published: 24th May 2021

Publication Type: Journal article

Abstract (Expand)

Sharing data is of great importance for research in medical sciences. It is the basis for reproducibility and reuse of already generated outcomes in new projects and in new contexts. FAIR data principles are the basics for sharing data. The Leipzig Health Atlas (LHA) platform follows these principles and provides data, describing metadata, and models that have been implemented in novel software tools and are available as demonstrators. LHA reuses and extends three different major components that have been previously developed by other projects. The SEEK management platform is the foundation providing a repository for archiving, presenting and secure sharing a wide range of publication results, such as published reports, (bio)medical data as well as interactive models and tools. The LHA Data Portal manages study metadata and data allowing to search for data of interest. Finally, PhenoMan is an ontological framework for phenotype modelling. This paper describes the interrelation of these three components. In particular, we use the PhenoMan to, firstly, model and represent phenotypes within the LHA platform. Then, secondly, the ontological phenotype representation can be used to generate search queries that are executed by the LHA Data Portal. The PhenoMan generates the queries in a novel domain specific query language (SDQL), which is specific for data management systems based on CDISC ODM standard, such as the LHA Data Portal. Our approach was successfully applied to represent phenotypes in the Leipzig Health Atlas with the possibility to execute corresponding queries within the LHA Data Portal.

Authors: Alexandr Uciteli, Christoph Beger, Jonas Wagner, Alexander Kiel, Frank A Meineke, Sebastian Stäubert, Matthias Löbe, René Hänsel, Judith Schuster, Toralf Kirsten, Heinrich Herre

Date Published: 1st May 2021

Publication Type: InCollection

Abstract (Expand)

BACKGROUND: The successful determination and analysis of phenotypes plays a key role in the diagnostic process, the evaluation of risk factors and the recruitment of participants for clinical and epidemiological studies. The development of computable phenotype algorithms to solve these tasks is a challenging problem, caused by various reasons. Firstly, the term ’phenotype’ has no generally agreed definition and its meaning depends on context. Secondly, the phenotypes are most commonly specified as non-computable descriptive documents. Recent attempts have shown that ontologies are a suitable way to handle phenotypes and that they can support clinical research and decision making. The SMITH Consortium is dedicated to rapidly establish an integrative medical informatics framework to provide physicians with the best available data and knowledge and enable innovative use of healthcare data for research and treatment optimisation. In the context of a methodological use case ’phenotype pipeline’ (PheP), a technology to automatically generate phenotype classifications and annotations based on electronic health records (EHR) is developed. A large series of phenotype algorithms will be implemented. This implies that for each algorithm a classification scheme and its input variables have to be defined. Furthermore, a phenotype engine is required to evaluate and execute developed algorithms. RESULTS: In this article, we present a Core Ontology of Phenotypes (COP) and the software Phenotype Manager (PhenoMan), which implements a novel ontology-based method to model, classify and compute phenotypes from already available data. Our solution includes an enhanced iterative reasoning process combining classification tasks with mathematical calculations at runtime. The ontology as well as the reasoning method were successfully evaluated with selected phenotypes including SOFA score, socio-economic status, body surface area and WHO BMI classification based on available medical data. CONCLUSIONS: We developed a novel ontology-based method to model phenotypes of living beings with the aim of automated phenotype reasoning based on available data. This new approach can be used in clinical context, e.g., for supporting the diagnostic process, evaluating risk factors, and recruiting appropriate participants for clinical and epidemiological studies.

Authors: Alexandr Uciteli, Christoph Beger, Toralf Kirsten, Frank A Meineke, Heinrich Herre

Date Published: 1st Dec 2020

Publication Type: Journal article

Abstract (Expand)

Purpose: The onset and progression of optic neuropathies like glaucoma often occurs asymmetrically between the two eyes of a patient. Interocular circumpapillary retinal nerve fiber layer thickness (cpRNFLT) differences could detect disease earlier. To apply such differences diagnostically, detailed location specific norms are necessary. Methods: Spectral-domain optical coherence tomography cpRNFLT circle scans from the population-based Leipzig Research Centre for Civilization Diseases–Adult study were selected. At each of the 768 radial scanning locations, normative interocular cpRNFLT difference distributions were calculated based on age and interocular radius difference. Results: A total of 8966 cpRNFLT scans of healthy eyes (4483 patients; 55% female; age range, 20–79 years) were selected. Global cpRNFLT average was 1.53 µm thicker in right eyes (P < 2.2 × 10–16). On 96% of the 768 locations, left minus right eye differences were significant (P < 0.05), varying between +11.6 µm (superonasal location) and −11.8 µm (nasal location). Increased age and difference in interocular scanning radii were associated with an increased mean and variance of interocular cpRNFLT difference at most retinal locations, apart from the area temporal to the inferior RNF bundle where cpRNFLT becomes more similar between eyes with age. Conclusions: We provide pointwise normative distributions of interocular cpRNFLT differences at an unprecedentedly high spatial resolution of 768 A-scans and reveal considerable location specific asymmetries as well as their associations with age and scanning radius differences between eyes. Translational Relevance: To facilitate clinical application, we implement these age- and radius-specific norms across all 768 locations in an open-source software to generate patient-specific normative color plots.

Authors: Neda Baniasadi, Franziska G. Rauscher, Dian Li, Mengyu Wang, Eun Young Choi, Hui Wang, Thomas Peschel, Kerstin Wirkner, Toralf Kirsten, Joachim Thiery, Christoph Engel, Markus Loeffler, Tobias Elze

Date Published: 3rd Aug 2020

Publication Type: Journal article

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies