Publications

6 Publications matching the given criteria: (Clear all filters)
Author: Hans Binder6

Abstract (Expand)

BACKGROUND: Clinical trials, epidemiological studies, clinical registries, and other prospective research projects, together with patient care services, are main sources of data in the medical research domain. They serve often as a basis for secondary research in evidence-based medicine, prediction models for disease, and its progression. This data are often neither sufficiently described nor accessible. Related models are often not accessible as a functional program tool for interested users from the health care and biomedical domains. OBJECTIVE: The interdisciplinary project Leipzig Health Atlas (LHA) was developed to close this gap. LHA is an online platform that serves as a sustainable archive providing medical data, metadata, models, and novel phenotypes from clinical trials, epidemiological studies, and other medical research projects. METHODS: Data, models, and phenotypes are described by semantically rich metadata. The platform prefers to share data and models presented in original publications but is also open for nonpublished data. LHA provides and associates unique permanent identifiers for each dataset and model. Hence, the platform can be used to share prepared, quality-assured datasets and models while they are referenced in publications. All managed data, models, and phenotypes in LHA follow the FAIR principles, with public availability or restricted access for specific user groups. RESULTS: The LHA platform is in productive mode (https://www.health-atlas.de/). It is already used by a variety of clinical trial and research groups and is becoming increasingly popular also in the biomedical community. LHA is an integral part of the forthcoming initiative building a national research data infrastructure for health in Germany.

Authors: T. Kirsten, F. A. Meineke, H. Loeffler-Wirth, C. Beger, A. Uciteli, S. Staubert, M. Lobe, R. Hansel, F. G. Rauscher, J. Schuster, T. Peschel, H. Herre, J. Wagner, S. Zachariae, C. Engel, M. Scholz, E. Rahm, H. Binder, M. Loeffler

Date Published: 3rd Aug 2022

Publication Type: Journal article

Abstract (Expand)

Background: The blood transcriptome is expected to provide a detailed picture of an organism's physiological state with potential outcomes for applications in medical diagnostics and molecular and epidemiological research. We here present the analysis of blood specimens of 3,388 adult individuals, together with phenotype characteristics such as disease history, medication status, lifestyle factors, and body mass index (BMI). The size and heterogeneity of this data challenges analytics in terms of dimension reduction, knowledge mining, feature extraction, and data integration. Methods: Self-organizing maps (SOM)-machine learning was applied to study transcriptional states on a population-wide scale. This method permits a detailed description and visualization of the molecular heterogeneity of transcriptomes and of their association with different phenotypic features. Results: The diversity of transcriptomes is described by personalized SOM-portraits, which specify the samples in terms of modules of co-expressed genes of different functional context. We identified two major blood transcriptome types where type 1 was found more in men, the elderly, and overweight people and it upregulated genes associated with inflammation and increased heme metabolism, while type 2 was predominantly found in women, younger, and normal weight participants and it was associated with activated immune responses, transcriptional, ribosomal, mitochondrial, and telomere-maintenance cell-functions. We find a striking overlap of signatures shared by multiple diseases, aging, and obesity driven by an underlying common pattern, which was associated with the immune response and the increase of inflammatory processes. Conclusions: Machine learning applications for large and heterogeneous omics data provide a holistic view on the diversity of the human blood transcriptome. It provides a tool for comparative analyses of transcriptional signatures and of associated phenotypes in population studies and medical applications.

Authors: M. Schmidt, L. Hopp, A. Arakelyan, H. Kirsten, C. Engel, K. Wirkner, K. Krohn, R. Burkhardt, J. Thiery, M. Loeffler, H. Loeffler-Wirth, H. Binder

Date Published: 11th Mar 2021

Publication Type: Journal article

Abstract (Expand)

Die Notwendigkeit des Managements von Forschungsdaten ist von der Forschungscommunity erkannt – Sponsoren, Gesetzgeber, Verlage erwarten und fördern die Einhaltung der guten wissenschaftlichen Praxis, was nicht nur die Archivierung umfasst, sondern auch die Verfügbarkeit von Forschungsdaten- und ergebnissen im Sinne der FAIR-Prinzipien. Der Leipzig Health Atlas (LHA) ist ein Projekt zur Präsentation und zum Austausch eines breiten Spektrums von Publikationen, (bio) medizinischen Daten (z.B. klinisch, epidemiologisch, molekular), Modellen und Tools z.B. zur Risikoberechnung in der Gesundheitsforschung. Die Verbundpartner decken hierbei einen breiten Bereich wissenschaftlicher Disziplinen ab, beginnend von medizinischer Systembiologie über klinische und epidemiologische Forschung bis zu ontologischer und dynamischer Modellierung. Derzeit sind 18 Forschungskonsortien beteiligt (u.a. zu den Domänen Lymphome, Gliome, Sepsis, Erblicher Darm- und Brustkrebs), die Daten aus klinischen Studien, Patientenkohorten, epidemiologischen Kohorten, teilweise mit umfangreichen molekularen und genetischen Profilen, sammeln. Die Modellierung umfasst algorithmische Phänotypklassifizierung, Risikovorhersage und Krankheitsdynamik. Wir konnten in einer ersten Entwicklungsphase zeigen, dass unsere webbasierte Plattform geeignet ist, um (1) Methoden zur Verfügung zu stellen, um individuelle Patientendaten aus Publikationen für eine Weiternutzung zugänglich zu machen, (2) algorithmische Werkzeuge zur Phänotypisierung und Risikoprofilerstellung zu präsentieren, (3) Werkzeuge zur Durchführung dynamischer Krankheits- und Therapiemodelle interaktiv verfügbar zu machen und (4) strukturierte Metadaten zu quantitativen und qualitativen Merkmalen bereit zu stellen. Die semantische Datenintegration liefert hierzu die Technologien (Ontologien und Datamining Werkzeuge) für die (semantische) Datenintegration und Wissensanreicherung. Darüber hinaus stellt sie Werkzeuge zur Verknüpfung eigener Daten, Analyseergebnisse, öffentlich zugänglicher Daten- und Metadaten-Repositorien sowie zur Verdichtung komplexer Daten zur Verfügung. Eine Arbeitsgruppe zur Applikationsentwicklung und –validierung entwickelt innovative paradigmatische Anwendungen für (1) die klinische Entscheidungsfindung für Krebsstudien, die genetische Beratung, für Risikovorhersagemodelle sowie Gewebe- und Krankheitsmodelle und (2) Anwendungen (sog. Apps), die sich auf die Charakterisierung neuer Phänotypen (z.B. ‚omics‘-Merkmale, Körpertypen, Referenzwerte) aus epidemiologischen Studien konzentrieren. Diese Anwendungen werden gemeinsam mit klinischen Experten, Genetikern, Systembiologen, Biometrikern und Bioinformatikern spezifiziert. Der LHA stellt Integrationstechnologie bereit und implementiert die Anwendungen für die User Communities unter Verwendung verschiedener Präsentationswerkzeuge bzw. Technologien (z.B. R-Shiny, i2b2, Kubernetes, SEEK). Dazu ist es erforderlich, die Daten und Metadaten vor dem Hochladen zu kuratieren, Erlaubnisse der Datenbesitzer einzuholen, die erforderlichen Datenschutzkriterien zu berücksichtigen und semantische Annotationen zu überprüfen. Zudem werden die zugelieferten Modellalgorithmen in einer qualitätsgesicherten Weise aufbereitet und, soweit anwendbar, online interaktiv zur Verfügung gestellt. Der LHA richtet sich insbesondere an die Zielgruppen Kliniker, Epidemiologen, Molekulargenetiker, Humangenetiker, Pathologen, Biostatistiker und Modellierer ist aber unter www.healthatlas.de öffentlich zugänglich – aus rechtlichen Gründen erfordert der Zugriff auf bestimmte Applikationen und Datensätze zusätzliche Autorisierung. Das Projekt wird über das BMBF Programm i:DSem (Integrative Datensemantik für die Systemmedizin, Förderkennzeichen 031L0026) gefördert.

Authors: F. A. Meineke, Sebastian Stäubert, Matthias Löbe, C. Beger, René Hänsel, A. Uciteli, H. Binder, T. Kirsten, M. Scholz, H. Herre, C. Engel, Markus Löffler

Date Published: 19th Sep 2019

Publication Type: Misc

Abstract (Expand)

Colorectal cancer (CRC) arising in Lynch syndrome (LS) comprises tumours with constitutional mutations in DNA mismatch repair genes. There is still a lack of whole-genome and transcriptome studies of LS-CRC to address questions about similarities and differences in mutation and gene expression characteristics between LS-CRC and sporadic CRC, about the molecular heterogeneity of LS-CRC, and about specific mechanisms of LS-CRC genesis linked to dysfunctional mismatch repair in LS colonic mucosa and the possible role of immune editing. Here, we provide a first molecular characterization of LS tumours and of matched tumour-distant reference colonic mucosa based on whole-genome DNA-sequencing and RNA-sequencing analyses. Our data support two subgroups of LS-CRCs, G1 and G2, whereby G1 tumours show a higher number of somatic mutations, a higher amount of microsatellite slippage, and a different mutation spectrum. The gene expression phenotypes support this difference. Reference mucosa of G1 shows a strong immune response associated with the expression of HLA and immune checkpoint genes and the invasion of CD4+ T cells. Such an immune response is not observed in LS tumours, G2 reference and normal (non-Lynch) mucosa, and sporadic CRC. We hypothesize that G1 tumours are edited for escape from a highly immunogenic microenvironment via loss of HLA presentation and T-cell exhaustion. In contrast, G2 tumours seem to develop in a less immunogenic microenvironment where tumour-promoting inflammation parallels tumourigenesis. Larger studies on non-neoplastic mucosa tissue of mutation carriers are required to better understand the early phases of emerging tumours. Copyright (c) 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Authors: H. Binder, L. Hopp, M. R. Schweiger, S. Hoffmann, F. Juhling, M. Kerick, B. Timmermann, S. Siebert, C. Grimm, L. Nersisyan, A. Arakelyan, M. Herberg, P. Buske, H. Loeffler-Wirth, M. Rosolowski, C. Engel, J. Przybilla, M. Peifer, N. Friedrichs, G. Moeslein, M. Odenthal, M. Hussong, S. Peters, S. Holzapfel, J. Nattermann, R. Hueneburg, W. Schmiegel, B. Royer-Pokora, S. Aretz, M. Kloth, M. Kloor, R. Buettner, J. Galle, M. Loeffler

Date Published: 21st Jul 2017

Publication Type: Not specified

Human Diseases: Lynch syndrome, colorectal cancer

Abstract (Expand)

Three-dimensional (3D) whole body scanners are increasingly used as precise measuring tools for the rapid quantification of anthropometric measures in epidemiological studies. We analyzed 3D whole body scanning data of nearly 10,000 participants of a cohort collected from the adult population of Leipzig, one of the largest cities in Eastern Germany. We present a novel approach for the systematic analysis of this data which aims at identifying distinguishable clusters of body shapes called body types. In the first step, our method aggregates body measures provided by the scanner into meta-measures, each representing one relevant dimension of the body shape. In a next step, we stratified the cohort into body types and assessed their stability and dependence on the size of the underlying cohort. Using self-organizing maps (SOM) we identified thirteen robust meta-measures and fifteen body types comprising between 1 and 18 percent of the total cohort size. Thirteen of them are virtually gender specific (six for women and seven for men) and thus reflect most abundant body shapes of women and men. Two body types include both women and men, and describe androgynous body shapes that lack typical gender specific features. The body types disentangle a large variability of body shapes enabling distinctions which go beyond the traditional indices such as body mass index, the waist-to-height ratio, the waist-to-hip ratio and the mortality-hazard ABSI-index. In a next step, we will link the identified body types with disease predispositions to study how size and shape of the human body impact health and disease.

Authors: H. Loffler-Wirth, E. Willscher, P. Ahnert, K. Wirkner, C. Engel, M. Loeffler, H. Binder

Date Published: 29th Jul 2016

Publication Type: Not specified

Human Diseases: obesity

Abstract (Expand)

BACKGROUND: The LIFE-Adult-Study is a population-based cohort study, which has recently completed the baseline examination of 10,000 randomly selected participants from Leipzig, a major city with 550,000 inhabitants in the east of Germany. It is the first study of this kind and size in an urban population in the eastern part of Germany. The study is conducted by the Leipzig Research Centre for Civilization Diseases (LIFE). Our objective is to investigate prevalences, early onset markers, genetic predispositions, and the role of lifestyle factors of major civilization diseases, with primary focus on metabolic and vascular diseases, heart function, cognitive impairment, brain function, depression, sleep disorders and vigilance dysregulation, retinal and optic nerve degeneration, and allergies. METHODS/DESIGN: The study covers a main age range from 40-79 years with particular deep phenotyping in elderly participants above the age of 60. The baseline examination was conducted from August 2011 to November 2014. All participants underwent an extensive core assessment programme (5-6 h) including structured interviews, questionnaires, physical examinations, and biospecimen collection. Participants over 60 underwent two additional assessment programmes (3-4 h each) on two separate visits including deeper cognitive testing, brain magnetic resonance imaging, diagnostic interviews for depression, and electroencephalography. DISCUSSION: The participation rate was 33 %. The assessment programme was accepted well and completely passed by almost all participants. Biomarker analyses have already been performed in all participants. Genotype, transcriptome and metabolome analyses have been conducted in subgroups. The first follow-up examination will commence in 2016.

Authors: M. Loeffler, C. Engel, P. Ahnert, D. Alfermann, K. Arelin, R. Baber, F. Beutner, H. Binder, E. Brahler, R. Burkhardt, U. Ceglarek, C. Enzenbach, M. Fuchs, H. Glaesmer, F. Girlich, A. Hagendorff, M. Hantzsch, U. Hegerl, S. Henger, T. Hensch, A. Hinz, V. Holzendorf, D. Husser, A. Kersting, A. Kiel, T. Kirsten, J. Kratzsch, K. Krohn, T. Luck, S. Melzer, J. Netto, M. Nuchter, M. Raschpichler, F. G. Rauscher, S. G. Riedel-Heller, C. Sander, M. Scholz, P. Schonknecht, M. L. Schroeter, J. C. Simon, R. Speer, J. Staker, R. Stein, Y. Stobel-Richter, M. Stumvoll, A. Tarnok, A. Teren, D. Teupser, F. S. Then, A. Tonjes, R. Treudler, A. Villringer, A. Weissgerber, P. Wiedemann, S. Zachariae, K. Wirkner, J. Thiery

Date Published: 22nd Jul 2015

Publication Type: Not specified

Human Diseases: disease of mental health, mental depression, vascular disease, allergic hypersensitivity disease, sleep disorder, retinal degeneration

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies