Publications

3 Publications matching the given criteria: (Clear all filters)
Published year: 20213

Abstract (Expand)

Sharing data is of great importance for research in medical sciences. It is the basis for reproducibility and reuse of already generated outcomes in new projects and in new contexts. FAIR data principles are the basics for sharing data. The Leipzig Health Atlas (LHA) platform follows these principles and provides data, describing metadata, and models that have been implemented in novel software tools and are available as demonstrators. LHA reuses and extends three different major components that have been previously developed by other projects. The SEEK management platform is the foundation providing a repository for archiving, presenting and secure sharing a wide range of publication results, such as published reports, (bio)medical data as well as interactive models and tools. The LHA Data Portal manages study metadata and data allowing to search for data of interest. Finally, PhenoMan is an ontological framework for phenotype modelling. This paper describes the interrelation of these three components. In particular, we use the PhenoMan to, firstly, model and represent phenotypes within the LHA platform. Then, secondly, the ontological phenotype representation can be used to generate search queries that are executed by the LHA Data Portal. The PhenoMan generates the queries in a novel domain specific query language (SDQL), which is specific for data management systems based on CDISC ODM standard, such as the LHA Data Portal. Our approach was successfully applied to represent phenotypes in the Leipzig Health Atlas with the possibility to execute corresponding queries within the LHA Data Portal.

Authors: A. Uciteli, C. Beger, J. Wagner, A. Kiel, F. A. Meineke, S. Staubert, M. Lobe, R. Hansel, J. Schuster, T. Kirsten, H. Herre

Date Published: 24th May 2021

Publication Type: Journal article

Abstract (Expand)

Planning clinical studies to check medical hypotheses requires the specification of eligibility criteria in order to identify potential study participants. Electronically available patient data allows to support the recruitment of patients for studies. The Smart Medical Information Technology for Healthcare (SMITH) consortium aims to establish data integration centres to enable the innovative use of available healthcare data for research and treatment optimization. The data from the electronic health record of patients in the participating hospitals is integrated into a Health Data Storage based on the Fast Healthcare Interoperability Resources standard (FHIR), developed by HL7. In SMITH, FHIR Search is used to query the integrated data. An investigation has shown the advantages and disadvantages of using FHIR Search for specifying eligibility criteria. This paper presents an approach for modelling eligibility criteria as well as for generating and executing FHIR Search queries. Our solution is based on the Phenotype Manager, a general ontological phenotyping framework to model and calculate phenotypes using the Core Ontology of Phenotypes.

Authors: A. Uciteli, C. Beger, J. Wagner, T. Kirsten, F. A. Meineke, S. Staubert, M. Lobe, H. Herre

Date Published: 26th Apr 2021

Publication Type: Journal article

Abstract (Expand)

Coeliac disease (CD) is a clinically heterogeneous autoimmune disease with variable presentation and progression triggered by gluten intake. Molecular or genetic factors contribute to disease heterogeneity, but the reasons for different outcomes are poorly understood. Transcriptome studies of tissue biopsies from CD patients are scarce. Here, we present a high-resolution analysis of the transcriptomes extracted from duodenal biopsies of 24 children and adolescents with active CD and 21 individuals without CD but with intestinal afflictions as controls. The transcriptomes of CD patients divide into three groups-a mixed group presenting the control cases, and CD-low and CD-high groups referring to lower and higher levels of CD severity. Persistence of symptoms was weakly associated with subgroup, but the highest marsh stages were present in subgroup CD-high, together with the highest cell cycle rates as an indicator of virtually complete villous atrophy. Considerable variation in inflammation-level between subgroups was further deciphered into immune cell types using cell type de-convolution. Self-organizing maps portrayal was applied to provide high-resolution landscapes of the CD-transcriptome. We find asymmetric patterns of miRNA and long non-coding RNA and discuss the effect of epigenetic regulation. Expression of genes involved in interferon gamma signaling represent suitable markers to distinguish CD from non-CD cases. Multiple pathways overlay in CD biopsies in different ways, giving rise to heterogeneous transcriptional patterns, which potentially provide information about etiology and the course of the disease.

Authors: J. Wolf, E. Willscher, H. Loeffler-Wirth, M. Schmidt, G. Flemming, M. Zurek, H. H. Uhlig, N. Handel, H. Binder

Date Published: 4th Mar 2021

Publication Type: Journal article

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies