Abstract (Expand)
OBJECTIVE To assess potential effects of variants in six lipid modulating genes (SORT1, HMGCR, MLXIPL, FADS2, APOE and MAFB) on early development of dyslipidemia independent of the degree of obesity …y in children, we investigated their association with total (TC), low density lipoprotein (LDL-C), high density lipoprotein (HDL-C) cholesterol and triglyceride (TG) levels in 594 children. Furthermore, we evaluated the expression profile of the candidate genes during human adipocyte differentiation.
RESULTS
Expression of selected genes increased 101 to \textgreater104 fold during human adipocyte differentiation, suggesting a potential link with adipogenesis. In genetic association studies adjusted for age, BMI SDS and sex, we identified significant associations for rs599839 near SORT1 with TC and LDL-C and for rs4420638 near APOE with TC and LDL-C. We performed Bayesian modelling of the combined lipid phenotype of HDL-C, LDL-C and TG to identify potentially causal polygenic effects on this multi-dimensional phenotype and considering obesity, age and sex as a-priori modulating factors. This analysis confirmed that rs599839 and rs4420638 affect LDL-C.
CONCLUSION
We show that lipid modulating genes are dynamically regulated during adipogenesis and that variants near SORT1 and APOE influence lipid levels independent of obesity in children. Bayesian modelling suggests causal effects of these variants.
OBJECTIVE
To assess potential effects of variants in six lipid modulating genes (SORT1, HMGCR, MLXIPL, FADS2, APOE and MAFB) on early development of dyslipidemia independent of the degree of obesity in children, we investigated their association with total (TC), low density lipoprotein (LDL-C), high density lipoprotein (HDL-C) cholesterol and triglyceride (TG) levels in 594 children. Furthermore, we evaluated the expression profile of the candidate genes during human adipocyte differentiation.
RESULTS
Expression of selected genes increased 10(1) to \textgreater10(4) fold during human adipocyte differentiation, suggesting a potential link with adipogenesis. In genetic association studies adjusted for age, BMI SDS and sex, we identified significant associations for rs599839 near SORT1 with TC and LDL-C and for rs4420638 near APOE with TC and LDL-C. We performed Bayesian modelling of the combined lipid phenotype of HDL-C, LDL-C and TG to identify potentially causal polygenic effects on this multi-dimensional phenotype and considering obesity, age and sex as a-priori modulating factors. This analysis confirmed that rs599839 and rs4420638 affect LDL-C.
CONCLUSION
We show that lipid modulating genes are dynamically regulated during adipogenesis and that variants near SORT1 and APOE influence lipid levels independent of obesity in children. Bayesian modelling suggests causal effects of these variants.
//
OBJECTIVE
To assess potential effects of variants in six lipid modulating genes (SORT1, HMGCR, MLXIPL, FADS2, APOE and MAFB) on early development of dyslipidemia independent of the degree of obesity in children, we investigated their association with total (TC), low density lipoprotein (LDL-C), high density lipoprotein (HDL-C) cholesterol and triglyceride (TG) levels in 594 children. Furthermore, we evaluated the expression profile of the candidate genes during human adipocyte differentiation.
RESULTS
Expression of selected genes increased 10(1) to \textgreater10(4) fold during human adipocyte differentiation, suggesting a potential link with adipogenesis. In genetic association studies adjusted for age, BMI SDS and sex, we identified significant associations for rs599839 near SORT1 with TC and LDL-C and for rs4420638 near APOE with TC and LDL-C. We performed Bayesian modelling of the combined lipid phenotype of HDL-C, LDL-C and TG to identify potentially causal polygenic effects on this multi-dimensional phenotype and considering obesity, age and sex as a-priori modulating factors. This analysis confirmed that rs599839 and rs4420638 affect LDL-C.
CONCLUSION
We show that lipid modulating genes are dynamically regulated during adipogenesis and that variants near SORT1 and APOE influence lipid levels independent of obesity in children. Bayesian modelling suggests causal effects of these variants.
OBJECTIVE
To assess potential effects of variants in six lipid modulating genes (SORT1, HMGCR, MLXIPL, FADS2, APOE and MAFB) on early development of dyslipidemia independent of the degree of obesity in children, we investigated their association with total (TC), low density lipoprotein (LDL-C), high density lipoprotein (HDL-C) cholesterol and triglyceride (TG) levels in 594 children. Furthermore, we evaluated the expression profile of the candidate genes during human adipocyte differentiation.
RESULTS
Expression of selected genes increased 10(1) to \textgreater10(4) fold during human adipocyte differentiation, suggesting a potential link with adipogenesis. In genetic association studies adjusted for age, BMI SDS and sex, we identified significant associations for rs599839 near SORT1 with TC and LDL-C and for rs4420638 near APOE with TC and LDL-C. We performed Bayesian modelling of the combined lipid phenotype of HDL-C, LDL-C and TG to identify potentially causal polygenic effects on this multi-dimensional phenotype and considering obesity, age and sex as a-priori modulating factors. This analysis confirmed that rs599839 and rs4420638 affect LDL-C.
CONCLUSION
We show that lipid modulating genes are dynamically regulated during adipogenesis and that variants near SORT1 and APOE influence lipid levels independent of obesity in children. Bayesian modelling suggests causal effects of these variants.
//
OBJECTIVE
To assess potential effects of variants in six lipid modulating genes (SORT1, HMGCR, MLXIPL, FADS2, APOE and MAFB) on early development of dyslipidemia independent of the degree of obesity in children, we investigated their association with total (TC), low density lipoprotein (LDL-C), high density lipoprotein (HDL-C) cholesterol and triglyceride (TG) levels in 594 children. Furthermore, we evaluated the expression profile of the candidate genes during human adipocyte differentiation.
RESULTS
Expression of selected genes increased 10(1) to \textgreater10(4) fold during human adipocyte differentiation, suggesting a potential link with adipogenesis. In genetic association studies adjusted for age, BMI SDS and sex, we identified significant associations for rs599839 near SORT1 with TC and LDL-C and for rs4420638 near APOE with TC and LDL-C. We performed Bayesian modelling of the combined lipid phenotype of HDL-C, LDL-C and TG to identify potentially causal polygenic effects on this multi-dimensional phenotype and considering obesity, age and sex as a-priori modulating factors. This analysis confirmed that rs599839 and rs4420638 affect LDL-C.
CONCLUSION
We show that lipid modulating genes are dynamically regulated during adipogenesis and that variants near SORT1 and APOE influence lipid levels independent of obesity in children. Bayesian modelling suggests causal effects of these variants.