Publications

227 Publications visible to you, out of a total of 227

Abstract (Expand)

Circular RNAs (circRNAs) are broadly expressed in eukaryotic cells, but their molecular mechanism in human disease remains obscure. Here we show that circular antisense non-coding RNA in the INK4 locus (circANRIL), which is transcribed at a locus of atherosclerotic cardiovascular disease on chromosome 9p21, confers atheroprotection by controlling ribosomal RNA (rRNA) maturation and modulating pathways of atherogenesis. CircANRIL binds to pescadillo homologue 1 (PES1), an essential 60S-preribosomal assembly factor, thereby impairing exonuclease-mediated pre-rRNA processing and ribosome biogenesis in vascular smooth muscle cells and macrophages. As a consequence, circANRIL induces nucleolar stress and p53 activation, resulting in the induction of apoptosis and inhibition of proliferation, which are key cell functions in atherosclerosis. Collectively, these findings identify circANRIL as a prototype of a circRNA regulating ribosome biogenesis and conferring atheroprotection, thereby showing that circularization of long non-coding RNAs may alter RNA function and protect from human disease.

Authors: Lesca M. Holdt, Anika Stahringer, Kristina Sass, Garwin Pichler, Nils A. Kulak, Wolfgang Wilfert, Alexander Kohlmaier, Andreas Herbst, Bernd H. Northoff, Alexandros Nicolaou, Gabor Gäbel, Frank Beutner, Markus Scholz, Joachim Thiery, Kiran Musunuru, Knut Krohn, Matthias Mann, Daniel Teupser

Date Published: 1st Nov 2016

Publication Type: Journal article

Abstract (Expand)

Sepsis is the dysregulated host response to an infection which leads to life-threatening organ dysfunction that varies by host genomic factors. We conducted a genome-wide association study (GWAS) in 740 adult septic patients and focused on 28day mortality as outcome. Variants with suggestive evidence for an association (p\textless/=10-5) were validated in two additional GWA studies (n=3470) and gene coding regions related to the variants were assessed in an independent exome sequencing study (n=74). In the discovery GWAS, we identified 243 autosomal variants which clustered in 14 loci (p\textless/=10-5). The best association signal (rs117983287; p=8.16x10-8) was observed for a missense variant located at chromosome 9q21.2 in the VPS13A gene. VPS13A was further supported by additional GWAS (p=0.03) and sequencing data (p=0.04). Furthermore, CRISPLD2 (p=5.99x10-6) and a region on chromosome 13q21.33 (p=3.34x10-7) were supported by both our data and external biological evidence. We found 14 loci with suggestive evidence for an association with 28day mortality and found supportive, converging evidence for three of them in independent data sets. Elucidating the underlying biological mechanisms of VPS13A, CRISPLD2, and the chromosome 13 locus should be a focus of future research activities.   Sepsis is the dysregulated host response to an infection which leads to life-threatening organ dysfunction that varies by host genomic factors. We conducted a genome-wide association study (GWAS) in 740 adult septic patients and focused on 28day mortality as outcome. Variants with suggestive evidence for an association (p\textless/=10-5) were validated in two additional GWA studies (n=3470) and gene coding regions related to the variants were assessed in an independent exome sequencing study (n=74). In the discovery GWAS, we identified 243 autosomal variants which clustered in 14 loci (p\textless/=10-5). The best association signal (rs117983287; p=8.16x10-8) was observed for a missense variant located at chromosome 9q21.2 in the VPS13A gene. VPS13A was further supported by additional GWAS (p=0.03) and sequencing data (p=0.04). Furthermore, CRISPLD2 (p=5.99x10-6) and a region on chromosome 13q21.33 (p=3.34x10-7) were supported by both our data and external biological evidence. We found 14 loci with suggestive evidence for an association with 28day mortality and found supportive, converging evidence for three of them in independent data sets. Elucidating the underlying biological mechanisms of VPS13A, CRISPLD2, and the chromosome 13 locus should be a focus of future research activities. //  Sepsis is the dysregulated host response to an infection which leads to life-threatening organ dysfunction that varies by host genomic factors. We conducted a genome-wide association study (GWAS) in 740 adult septic patients and focused on 28day mortality as outcome. Variants with suggestive evidence for an association (p\textless/=10-5) were validated in two additional GWA studies (n=3470) and gene coding regions related to the variants were assessed in an independent exome sequencing study (n=74). In the discovery GWAS, we identified 243 autosomal variants which clustered in 14 loci (p\textless/=10-5). The best association signal (rs117983287; p=8.16x10-8) was observed for a missense variant located at chromosome 9q21.2 in the VPS13A gene. VPS13A was further supported by additional GWAS (p=0.03) and sequencing data (p=0.04). Furthermore, CRISPLD2 (p=5.99x10-6) and a region on chromosome 13q21.33 (p=3.34x10-7) were supported by both our data and external biological evidence. We found 14 loci with suggestive evidence for an association with 28day mortality and found supportive, converging evidence for three of them in independent data sets. Elucidating the underlying biological mechanisms of VPS13A, CRISPLD2, and the chromosome 13 locus should be a focus of future research activities.

Authors: Andre Scherag, Franziska Schoneweck, Miriam Kesselmeier, Stefan Taudien, Matthias Platzer, Marius Felder, Christoph Sponholz, Anna Rautanen, Adrian V. S. Hill, Charles J. Hinds, Hamid Hossain, Norbert Suttorp, Oliver Kurzai, Hortense Slevogt, Evangelos J. Giamarellos-Bourboulis, Apostolos Armaganidis, Evelyn Trips, Markus Scholz, Frank M. Brunkhorst

Date Published: 1st Oct 2016

Publication Type: Journal article

Abstract (Expand)

Literacy learning depends on the flexibility of the human brain to reconfigure itself in response to environmental influences. At the same time, literacy and disorders of literacy acquisition are heritable and thus to some degree genetically predetermined. Here we used a multivariate non-parametric genetic model to relate literacy-associated genetic variants to grey and white matter volumes derived by voxel-based morphometry in a cohort of 141 children. Subsequently, a sample of 34 children attending grades 4 to 8, and another sample of 20 children, longitudinally followed from kindergarten to first grade, were classified as dyslexics and controls using linear binary support vector machines. The NRSN1-associated grey matter volume of the ’visual word form area’ achieved a classification accuracy of ~ 73% in literacy-experienced students and distinguished between later dyslexic individuals and controls with an accuracy of 75% at kindergarten age. These findings suggest that the cortical plasticity of a region vital for literacy might be genetically modulated, thereby potentially preconstraining literacy outcome. Accordingly, these results could pave the way for identifying and treating the most common learning disorder before it manifests itself in school.   Literacy learning depends on the flexibility of the human brain to reconfigure itself in response to environmental influences. At the same time, literacy and disorders of literacy acquisition are heritable and thus to some degree genetically predetermined. Here we used a multivariate non-parametric genetic model to relate literacy-associated genetic variants to grey and white matter volumes derived by voxel-based morphometry in a cohort of 141 children. Subsequently, a sample of 34 children attending grades 4 to 8, and another sample of 20 children, longitudinally followed from kindergarten to first grade, were classified as dyslexics and controls using linear binary support vector machines. The NRSN1-associated grey matter volume of the ’visual word form area’ achieved a classification accuracy of ~ 73% in literacy-experienced students and distinguished between later dyslexic individuals and controls with an accuracy of 75% at kindergarten age. These findings suggest that the cortical plasticity of a region vital for literacy might be genetically modulated, thereby potentially preconstraining literacy outcome. Accordingly, these results could pave the way for identifying and treating the most common learning disorder before it manifests itself in school. //  Literacy learning depends on the flexibility of the human brain to reconfigure itself in response to environmental influences. At the same time, literacy and disorders of literacy acquisition are heritable and thus to some degree genetically predetermined. Here we used a multivariate non-parametric genetic model to relate literacy-associated genetic variants to grey and white matter volumes derived by voxel-based morphometry in a cohort of 141 children. Subsequently, a sample of 34 children attending grades 4 to 8, and another sample of 20 children, longitudinally followed from kindergarten to first grade, were classified as dyslexics and controls using linear binary support vector machines. The NRSN1-associated grey matter volume of the ’visual word form area’ achieved a classification accuracy of ~ 73% in literacy-experienced students and distinguished between later dyslexic individuals and controls with an accuracy of 75% at kindergarten age. These findings suggest that the cortical plasticity of a region vital for literacy might be genetically modulated, thereby potentially preconstraining literacy outcome. Accordingly, these results could pave the way for identifying and treating the most common learning disorder before it manifests itself in school.

Authors: Michael A. Skeide, Indra Kraft, Bent Muller, Gesa Schaadt, Nicole E. Neef, Jens Brauer, Arndt Wilcke, Holger Kirsten, Johannes Boltze, Angela D. Friederici

Date Published: 26th Sep 2016

Publication Type: Journal article

Abstract (Expand)

Dyslexia is a severe disorder in the acquisition of reading and writing. Several studies investigated the role of genetics for reading, writing and spelling ability in the general population. However, many of the identified SNPs were not analysed in case-control cohorts. Here, we investigated SNPs previously linked to reading or spelling ability in the general population in a German case-control cohort. Furthermore, we characterised these SNPs for functional relevance with in silico methods and meta-analysed them with previous studies. A total of 16 SNPs within five genes were included. The total number of risk alleles was higher in cases than in controls. Three SNPs were nominally associated with dyslexia: rs7765678 within DCDC2, and rs2038137 and rs6935076 within KIAA0319. The relevance of rs2038137 and rs6935076 was further supported by the meta-analysis. Functional profiling included analysis of tissue-specific expression, annotations for regulatory elements and effects on gene expression levels (eQTLs). Thereby, we found molecular mechanistical implications for 13 of all 16 included SNPs. SNPs associated in our cohort showed stronger gene-specific eQTL effects than non-associated SNPs. In summary, our results validate SNPs previously linked to reading and spelling in the general population in dyslexics and provide insights into their putative molecular pathomechanisms.

Authors: Bent Müller, Arndt Wilcke, Ivonne Czepezauer, Peter Ahnert, Johannes Boltze, Holger Kirsten

Date Published: 1st Sep 2016

Publication Type: Journal article

Abstract (Expand)

BACKGROUND Genome-wide association studies have identified variants within the FTO (fat mass and obesity associated) locus as the strongest predictors of obesity amongst all obesity-associated genee loci. Recent evidence suggests that variants in FTO directly affect human adipocyte function through targeting IRX3 and IRX5 and thermogenesis regulation. AIM We addressed the relevance of this proposed FTO-IRX pathway in adipose tissue (AT) of children. RESULTS Expression of IRX3 was higher in adipocytes compared to SVF. We found increased adipocyte-specific expression of IRX3 and IRX5 with the presence of the FTO risk haplotype in lean children, whereas it was unaffected by risk variants in obese peers. We further show that IRX3 expression was elevated in isolated adipocytes and AT of lean compared to obese children, particularly in UCP1-negative adipocytes, and inversely correlated with BMI SDS. Independent of BMI, IRX3 expression in adipocytes was significantly related to adipocyte hypertrophy, and subsequent associations with AT inflammation and HOMA-IR in the children. CONCLUSION One interpretation of our observation of FTO risk variants linked to IRX3 expression and adipocyte size restricted to lean children, along with the decreased IRX3 expression in obese compared to lean peers, may reflect a defense mechanism for protecting body-weight, which is pertinent for lean children.

Authors: Kathrin Landgraf, Markus Scholz, Peter Kovacs, Wieland Kiess, Antje Körner

Date Published: 25th Aug 2016

Publication Type: Journal article

Abstract

Not specified

Authors: Dirk Hasenclever, Markus Scholz

Date Published: 23rd Aug 2016

Publication Type: Journal article

Abstract (Expand)

BACKGROUND The liver plays a key role in amino acid metabolism. In former studies, a ratio between branched-chain and aromatic amino acids (Fischer’s ratio) revealed associations with hepatic encephalopathy.. Furthermore, low concentrations of branched-chain amino acids were linked to sarcopenia in literature. Encephalopathy and sarcopenia are known to dramatically worsen the prognosis. Aim of this study was to investigate a complex panel of plasma amino acids in the context of mortality in patients with end-stage liver disease. METHODS 166 patients evaluated for orthotopic liver transplantation were included. 19 amino acids were measured from citrated plasma samples using mass spectrometry. We performed survival analysis for plasma amino acid constellations and examined the relationship to established mortality predictors. RESULTS 33/166 (19.9%) patients died during follow-up. Lower values of valine (p\textless0.001), Fischer’s ratio (p\textless0.001) and valine to phenylalanine ratio (p\textless0.001) and higher values of phenylalanine (p\textless0.05) and tyrosine (p\textless0.05) were significantly associated with mortality. When divided in three groups, the tertiles discriminated cumulative survival for valine (p = 0.016), phenylalanine (p = 0.024) and in particular for valine to phenylalanine ratio (p = 0.003) and Fischer’s ratio (p = 0.005). Parameters were also significantly correlated with MELD and MELD-Na score. CONCLUSIONS Amino acids in plasma are valuable biomarkers to determine increased risk of mortality in patients with end-stage liver disease. In particular, valine concentrations and constellations composed of branched-chain and aromatic amino acids were strongly associated with prognosis. Due to their pathophysiological importance, the identified amino acids could be used to examine individual dietary recommendations to serve as potential therapeutic targets.

Authors: Benedict Kinny-Köster, Michael Bartels, Susen Becker, Markus Scholz, Joachim Thiery, Uta Ceglarek, Thorsten Kaiser

Date Published: 13th Jul 2016

Publication Type: Journal article

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies