Publications

43 Publications visible to you, out of a total of 43

Abstract (Expand)

BACKGROUND: Diffuse lower WHO grade II and III gliomas (LGG) are slowly progressing brain tumors, many of which eventually transform into a more aggressive type. LGG is characterized by widespread genetic and transcriptional heterogeneity, yet little is known about the heterogeneity of the DNA methylome, its function in tumor biology, coupling with the transcriptome and tumor microenvironment and its possible impact for tumor development. METHODS: We here present novel DNA methylation data of an LGG-cohort collected in the German Glioma Network containing about 85% isocitrate dehydrogenase (IDH) mutated tumors and performed a combined bioinformatics analysis using patient-matched genome and transcriptome data. RESULTS: Stratification of LGG based on gene expression and DNA-methylation provided four consensus subtypes. We characterized them in terms of genetic alterations, functional context, cellular composition, tumor microenvironment and their possible impact for treatment resistance and prognosis. Glioma with astrocytoma-resembling phenotypes constitute the largest fraction of nearly 60%. They revealed largest diversity and were divided into four expression and three methylation groups which only partly match each other thus reflecting largely decoupled expression and methylation patterns. We identified a novel G-protein coupled receptor and a cancer-related 'keratinization' methylation signature in in addition to the glioma-CpG island methylator phenotype (G-CIMP) signature. These different signatures overlap and combine in various ways giving rise to diverse methylation and expression patterns that shape the glioma phenotypes. The decrease of global methylation in astrocytoma-like LGG associates with higher WHO grade, age at diagnosis and inferior prognosis. We found analogies between astrocytoma-like LGG with grade IV IDH-wild type tumors regarding possible worsening of treatment resistance along a proneural-to-mesenchymal axis. Using gene signature-based inference we elucidated the impact of cellular composition of the tumors including immune cell bystanders such as macrophages. CONCLUSIONS: Genomic, epigenomic and transcriptomic factors act in concert but partly also in a decoupled fashion what underpins the need for integrative, multidimensional stratification of LGG by combining these data on gene and cellular levels to delineate mechanisms of gene (de-)regulation and to enable better patient stratification and individualization of treatment.

Authors: H. Binder, E. Willscher, H. Loeffler-Wirth, L. Hopp, D. T. W. Jones, S. M. Pfister, M. Kreuz, D. Gramatzki, E. Fortenbacher, B. Hentschel, M. Tatagiba, U. Herrlinger, H. Vatter, J. Matschke, M. Westphal, D. Krex, G. Schackert, J. C. Tonn, U. Schlegel, H. J. Steiger, W. Wick, R. G. Weber, M. Weller, M. Loeffler

Date Published: 25th Apr 2019

Publication Type: Not specified

Human Diseases: brain glioma

Abstract (Expand)

3D-body scanning anthropometry is a suitable method for characterization of physiological development of children and adolescents, and for understanding onset and progression of disorders like overweight and obesity. Here we present a novel body typing approach to describe and to interpret longitudinal 3D-body scanning data of more than 800 children and adolescents measured in up to four follow-ups in intervals of 1 year, referring to an age range between 6 and 18 years. We analyzed transitions between body types assigned to lower-, normal- and overweight participants upon development of children and adolescents. We found a virtually parallel development of the body types with only a few transitions between them. Body types of children and adolescents tend to conserve their weight category. 3D body scanning anthropometry in combination with body typing constitutes a novel option to investigate onset and progression of obesity in children.

Authors: H. Loeffler-Wirth, M. Vogel, T. Kirsten, F. Glock, T. Poulain, A. Korner, M. Loeffler, W. Kiess, H. Binder

Date Published: 14th Sep 2018

Publication Type: Not specified

Human Diseases: obesity

Abstract (Expand)

We analyzed the blood transcriptome of sepsis framed within community-acquired pneumonia (CAP) and characterized its molecular and cellular heterogeneity in terms of functional modules of co-regulated genes with impact for the underlying pathophysiological mechanisms. Our results showed that CAP severity is associated with immune suppression owing to T-cell exhaustion and HLA and chemokine receptor deactivation, endotoxin tolerance, macrophage polarization, and metabolic conversion from oxidative phosphorylation to glycolysis. We also found footprints of host's response to viruses and bacteria, altered levels of mRNA from erythrocytes and platelets indicating coagulopathy that parallel severity of sepsis and survival. Finally, our data demonstrated chromatin re-modeling associated with extensive transcriptional deregulation of chromatin modifying enzymes, which suggests the extensive changes of DNA methylation with potential impact for marker selection and functional characterization. Based on the molecular footprints identified, we propose a novel stratification of CAP cases into six groups differing in the transcriptomic scores of CAP severity, interferon response, and erythrocyte mRNA expression with impact for prognosis. Our analysis increases the resolution of transcriptomic footprints of CAP and reveals opportunities for selecting sets of transcriptomic markers with impact for translation of omics research in terms of patient stratification schemes and sets of signature genes.

Authors: L. Hopp, H. Loeffler-Wirth, L. Nersisyan, A. Arakelyan, H. Binder

Date Published: 2nd Aug 2018

Publication Type: Not specified

Human Diseases: disease by infectious agent, pneumonia

Abstract (Expand)

Recent studies revealed trajectories of mutational events in early melanomagenesis, but the accompanying changes in gene expression are far less understood. Therefore, we performed a comprehensive RNA-seq analysis of laser-microdissected melanocytic nevi (n = 23) and primary melanoma samples (n = 57) and characterized the molecular mechanisms of early melanoma development. Using self-organizing maps, unsupervised clustering, and analysis of pseudotime (PT) dynamics to identify evolutionary trajectories, we describe here two transcriptomic types of melanocytic nevi (N1 and N2) and primary melanomas (M1 and M2). N1/M1 lesions are characterized by pigmentation-type and MITF gene signatures, and a high prevalence of NRAS mutations in M1 melanomas. N2/M2 lesions are characterized by inflammatory-type and AXL gene signatures with an equal distribution of wild-type and mutated BRAF and low prevalence of NRAS mutations in M2 melanomas. Interestingly, N1 nevi and M1 melanomas and N2 nevi and M2 melanomas, respectively, cluster together, but there is no clustering in a stage-dependent manner. Transcriptional signatures of M1 melanomas harbor signatures of BRAF/MEK inhibitor resistance and M2 melanomas harbor signatures of anti-PD-1 antibody treatment resistance. Pseudotime dynamics of nevus and melanoma samples are suggestive for a switch-like immune-escape mechanism in melanoma development with downregulation of immune genes paralleled by an increasing expression of a cell cycle signature in late-stage melanomas. Taken together, the transcriptome analysis identifies gene signatures and mechanisms underlying development of melanoma in early and late stages with relevance for diagnostics and therapy.

Authors: M. Kunz, H. Loffler-Wirth, M. Dannemann, E. Willscher, G. Doose, J. Kelso, T. Kottek, B. Nickel, L. Hopp, J. Landsberg, S. Hoffmann, T. Tuting, P. Zigrino, C. Mauch, J. Utikal, M. Ziemer, H. J. Schulze, M. Holzel, A. Roesch, S. Kneitz, S. Meierjohann, A. Bosserhoff, H. Binder, M. Schartl

Date Published: 12th Jul 2018

Publication Type: Not specified

Human Diseases: melanoma

Abstract (Expand)

AIM: We present here a novel method that enables unraveling the interplay between gene expression and DNA methylation in complex diseases such as cancer. MATERIALS & METHODS: The method is based on self-organizing maps and allows for analysis of data landscapes from 'governed by methylation' to 'governed by expression'. RESULTS: We identified regulatory modules of coexpressed and comethylated genes in high-grade gliomas: two modes are governed by genes hypermethylated and underexpressed in IDH-mutated cases, while two other modes reflect immune and stromal signatures in the classical and mesenchymal subtypes. A fifth mode with proneural characteristics comprises genes of repressed and poised chromatin states active in healthy brain. Two additional modes enrich genes either in active or repressed chromatin states. CONCLUSION: The method disentangles the interplay between gene expression and methylation. It has the potential to integrate also mutation and copy number data and to apply to large sample cohorts.

Authors: L. Hopp, H. Loffler-Wirth, J. Galle, H. Binder

Date Published: 12th Jun 2018

Publication Type: Not specified

Human Diseases: glioblastoma multiforme

Abstract (Expand)

Single-cell transcriptomics has been used for analysis of heterogeneous populations of cells during developmental processes and for analysis of tumor cell heterogeneity. More recently, analysis of pseudotime (PT) dynamics of heterogeneous cell populations has been established as a powerful concept to study developmental processes. Here we perform PT analysis of 3 melanoma short-term cultures with different genetic backgrounds to study specific and concordant properties of PT dynamics of selected cellular programs with impact on melanoma progression. Overall, in our setting of melanoma cells PT dynamics towards higher tumor malignancy appears to be largely driven by cell cycle genes. Single cells of all three short-term cultures show a bipolar expression of microphthalmia-associated transcription factor (MITF) and AXL receptor tyrosine kinase (AXL) signatures. Furthermore, opposing gene expression changes are observed for genes regulated by epigenetic mechanisms suggesting epigenetic reprogramming during melanoma progression. The three melanoma short-term cultures show common themes of PT dynamics such as a stromal signature at initiation, bipolar expression of the MITF/AXL signature and opposing regulation of poised and activated promoters. Differences are observed at the late stage of PT dynamics with high, low or intermediate MITF and anticorrelated AXL signatures. These findings may help to identify targets for interference at different stages of tumor progression.

Authors: H. Loeffler-Wirth, H. Binder, E. Willscher, T. Gerber, M. Kunz

Date Published: 3rd Apr 2018

Publication Type: Not specified

Human Diseases: melanoma

Abstract (Expand)

INTRODUCTION: Autoinflammatory and autoimmune disorders are characterized by aberrant changes in innate and adaptive immunity that may lead from an initial inflammatory state to an organ specific damage. These disorders possess heterogeneity in terms of affected organs and clinical phenotypes. However, despite the differences in etiology and phenotypic variations, they share genetic associations, treatment responses and clinical manifestations. The mechanisms involved in their initiation and development remain poorly understood, however the existence of some clear similarities between autoimmune and autoinflammatory disorders indicates variable degrees of interaction between immune-related mechanisms. METHODS: Our study aims at contributing to a holistic, pathway-centered view on the inflammatory condition of autoimmune and autoinflammatory diseases. We have evaluated similarities and specificities of pathway activity changes in twelve autoimmune and autoinflammatory disorders by performing meta-analysis of publicly available gene expression datasets generated from peripheral blood mononuclear cells, using a bioinformatics pipeline that integrates Self Organizing Maps and Pathway Signal Flow algorithms along with KEGG pathway topologies. RESULTS AND CONCLUSIONS: The results reveal that clinically divergent disease groups share common pathway perturbation profiles. We identified pathways, similarly perturbed in all the studied diseases, such as PI3K-Akt, Toll-like receptor, and NF-kappa B signaling, that serve as integrators of signals guiding immune cell polarization, migration, growth, survival and differentiation. Further, two clusters of diseases were identified based on specifically dysregulated pathways: one gathering mostly autoimmune and the other mainly autoinflammatory diseases. Cluster separation was driven not only by apparent involvement of pathways implicated in adaptive immunity in one case, and inflammation in the other, but also by processes not explicitly related to immune response, but rather representing various events related to the formation of specific pathophysiological environment. Thus, our data suggest that while all of the studied diseases are affected by activation of common inflammatory processes, disease-specific variations in their relative balance are also identified.

Authors: A. Arakelyan, L. Nersisyan, D. Poghosyan, L. Khondkaryan, A. Hakobyan, H. Loffler-Wirth, E. Melanitou, H. Binder

Date Published: 4th Nov 2017

Publication Type: Not specified

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies