Publications

46 Publications visible to you, out of a total of 46

Abstract (Expand)

IHE has defined more than 200 integration profiles in order to improve the interoperability of application systems in healthcare. These profiles describe how standards should be used in particular use cases. These profiles are very helpful but their correct use is challenging, if the user is not familiar to the specifications. Therefore, inexperienced modelers of information systems quickly lose track of existing IHE profiles. In addition, the users of these profiles are often not aware of rules that are defined within these profiles and of dependencies that exist between the profiles. There are also modelers that do not notice the differences between the implemented actors, because they do not know the optional capabilities of some actors. The aim of this paper is therefore to describe a concept how modelers of information systems can be supported in the selection and use of IHE profiles and how this concept was prototypically implemented in the "Three-layer Graph-based meta model" modeling tool (3LGM2 Tool). The described modeling process consists of the following steps that can be looped: defining the use case, choosing suitable integration profiles, choosing actors and their options and assigning them to application systems, checking for required actor groupings and modeling transactions. Most of these steps were implemented in the 3LGM2 Tool. Further implementation effort and evaluation of our approach by inexperienced users is needed. But after that our tool should be a valuable tool for modelers planning healthcare information system architectures, in particular those based on IHE.

Authors: A. Merzweiler, S. Staubert, A. Strubing, A. Tonmbiak, K. Kaulke, J. Drepper, B. Bergh, A. Winter

Date Published: 24th May 2021

Publication Type: Journal article

Abstract (Expand)

Sharing data is of great importance for research in medical sciences. It is the basis for reproducibility and reuse of already generated outcomes in new projects and in new contexts. FAIR data principles are the basics for sharing data. The Leipzig Health Atlas (LHA) platform follows these principles and provides data, describing metadata, and models that have been implemented in novel software tools and are available as demonstrators. LHA reuses and extends three different major components that have been previously developed by other projects. The SEEK management platform is the foundation providing a repository for archiving, presenting and secure sharing a wide range of publication results, such as published reports, (bio)medical data as well as interactive models and tools. The LHA Data Portal manages study metadata and data allowing to search for data of interest. Finally, PhenoMan is an ontological framework for phenotype modelling. This paper describes the interrelation of these three components. In particular, we use the PhenoMan to, firstly, model and represent phenotypes within the LHA platform. Then, secondly, the ontological phenotype representation can be used to generate search queries that are executed by the LHA Data Portal. The PhenoMan generates the queries in a novel domain specific query language (SDQL), which is specific for data management systems based on CDISC ODM standard, such as the LHA Data Portal. Our approach was successfully applied to represent phenotypes in the Leipzig Health Atlas with the possibility to execute corresponding queries within the LHA Data Portal.

Authors: Alexandr Uciteli, Christoph Beger, Jonas Wagner, Alexander Kiel, Frank A Meineke, Sebastian Stäubert, Matthias Löbe, René Hänsel, Judith Schuster, Toralf Kirsten, Heinrich Herre

Date Published: 1st May 2021

Publication Type: InCollection

Abstract (Expand)

Planning clinical studies to check medical hypotheses requires the specification of eligibility criteria in order to identify potential study participants. Electronically available patient data allows to support the recruitment of patients for studies. The Smart Medical Information Technology for Healthcare (SMITH) consortium aims to establish data integration centres to enable the innovative use of available healthcare data for research and treatment optimization. The data from the electronic health record of patients in the participating hospitals is integrated into a Health Data Storage based on the Fast Healthcare Interoperability Resources standard (FHIR), developed by HL7. In SMITH, FHIR Search is used to query the integrated data. An investigation has shown the advantages and disadvantages of using FHIR Search for specifying eligibility criteria. This paper presents an approach for modelling eligibility criteria as well as for generating and executing FHIR Search queries. Our solution is based on the Phenotype Manager, a general ontological phenotyping framework to model and calculate phenotypes using the Core Ontology of Phenotypes.

Authors: A. Uciteli, C. Beger, J. Wagner, T. Kirsten, F. A. Meineke, S. Staubert, M. Lobe, H. Herre

Date Published: 26th Apr 2021

Publication Type: Journal article

Abstract (Expand)

Despite their young age, the FAIR principles are recognised as important guidelines for research data management. Their generic design, however, leaves much room for interpretation in domain-specific application. Based on practical experience in the operation of a data repository, this article addresses problems in FAIR provisioning of medical data for research purposes in the use case of the Leipzig Health Atlas project and shows necessary future developments.

Authors: M. Lobe, F. Matthies, S. Staubert, F. A. Meineke, A. Winter

Date Published: 16th Jun 2020

Publication Type: Journal article

Abstract (Expand)

BACKGROUND: The aim of the German Medical Informatics Initiative is to establish a national infrastructure for integrating and sharing health data. To this, Data Integration Centers are set up at university medical centers, which address data harmonization, information security and data protection. To capture patient consent, a common informed consent template has been developed. It consists of different modules addressing permissions for using data and biosamples. On the technical level, a common digital representation of information from signed consent templates is needed. As the partners in the initiative are free to adopt different solutions for managing consent information (e.g. IHE BPPC or HL7 FHIR Consent Resources), we had to develop an interoperability layer. METHODS: First, we compiled an overview of data items required to reflect the information from the MII consent template as well as patient preferences and derived permissions. Next, we created entity-relationship diagrams to formally describe the conceptual data model underlying relevant items. We then compared this data model to conceptual models describing representations of consent information using different interoperability standards. We used the result of this comparison to derive an interoperable representation that can be mapped to common standards. RESULTS: The digital representation needs to capture the following information: (1) version of the consent, (2) consent status for each module, and (3) period of validity of the status. We found that there is no generally accepted solution to represent status information in a manner interoperable with all relevant standards. Hence, we developed a pragmatic solution, comprising codes which describe combinations of modules with a basic set of status labels. We propose to maintain these codes in a public registry called ART-DECOR. We present concrete technical implementations of our approach using HL7 FHIR and IHE BPPC which are also compatible with the open-source consent management software gICS. CONCLUSIONS: The proposed digital representation is (1) generic enough to capture relevant information from a wide range of consent documents and data use regulations and (2) interoperable with common technical standards. We plan to extend our model to include more fine-grained status codes and rules for automated access control.

Authors: R. Bild, M. Bialke, K. Buckow, T. Ganslandt, K. Ihrig, R. Jahns, A. Merzweiler, S. Roschka, B. Schreiweis, S. Staubert, S. Zenker, F. Prasser

Date Published: 5th Jun 2020

Publication Type: Journal article

Abstract (Expand)

BACKGROUND: The aim of the German Medical Informatics Initiative is to establish a national infrastructure for integrating and sharing health data. To this, Data Integration Centers are set up at university medical centers, which address data harmonization, information security and data protection. To capture patient consent, a common informed consent template has been developed. It consists of different modules addressing permissions for using data and biosamples. On the technical level, a common digital representation of information from signed consent templates is needed. As the partners in the initiative are free to adopt different solutions for managing consent information (e.g. IHE BPPC or HL7 FHIR Consent Resources), we had to develop an interoperability layer. METHODS: First, we compiled an overview of data items required to reflect the information from the MII consent template as well as patient preferences and derived permissions. Next, we created entity-relationship diagrams to formally describe the conceptual data model underlying relevant items. We then compared this data model to conceptual models describing representations of consent information using different interoperability standards. We used the result of this comparison to derive an interoperable representation that can be mapped to common standards. RESULTS: The digital representation needs to capture the following information: (1) version of the consent, (2) consent status for each module, and (3) period of validity of the status. We found that there is no generally accepted solution to represent status information in a manner interoperable with all relevant standards. Hence, we developed a pragmatic solution, comprising codes which describe combinations of modules with a basic set of status labels. We propose to maintain these codes in a public registry called ART-DECOR. We present concrete technical implementations of our approach using HL7 FHIR and IHE BPPC which are also compatible with the open-source consent management software gICS. CONCLUSIONS: The proposed digital representation is (1) generic enough to capture relevant information from a wide range of consent documents and data use regulations and (2) interoperable with common technical standards. We plan to extend our model to include more fine-grained status codes and rules for automated access control.

Authors: Raffael Bild, Martin Bialke, Karoline Buckow, Thomas Ganslandt, Kristina Ihrig, Roland Jahns, Angela Merzweiler, Sybille Roschka, Björn Schreiweis, Sebastian Stäubert, Sven Zenker, Fabian Prasser

Date Published: 1st Jun 2020

Publication Type: Journal article

Abstract (Expand)

Despite their young age, the FAIR principles are recognised as important guidelines for research data management. Their generic design, however, leaves much room for interpretation in domain-specific application. Based on practical experience in the operation of a data repository, this article addresses problems in FAIR provisioning of medical data for research purposes in the use case of the Leipzig Health Atlas project and shows necessary future developments.

Authors: Matthias Löbe, Franz Matthies, Sebastian Stäubert, Frank A Meineke, Alfred Winter

Date Published: 1st Jun 2020

Publication Type: Journal article

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies