Publications

251 Publications visible to you, out of a total of 251

Abstract (Expand)

Dyslexia is a severe disorder in the acquisition of reading and writing. Several studies investigated the role of genetics for reading, writing and spelling ability in the general population. However, many of the identified SNPs were not analysed in case-control cohorts. Here, we investigated SNPs previously linked to reading or spelling ability in the general population in a German case-control cohort. Furthermore, we characterised these SNPs for functional relevance with in silico methods and meta-analysed them with previous studies. A total of 16 SNPs within five genes were included. The total number of risk alleles was higher in cases than in controls. Three SNPs were nominally associated with dyslexia: rs7765678 within DCDC2, and rs2038137 and rs6935076 within KIAA0319. The relevance of rs2038137 and rs6935076 was further supported by the meta-analysis. Functional profiling included analysis of tissue-specific expression, annotations for regulatory elements and effects on gene expression levels (eQTLs). Thereby, we found molecular mechanistical implications for 13 of all 16 included SNPs. SNPs associated in our cohort showed stronger gene-specific eQTL effects than non-associated SNPs. In summary, our results validate SNPs previously linked to reading and spelling in the general population in dyslexics and provide insights into their putative molecular pathomechanisms.

Authors: Bent Müller, Arndt Wilcke, Ivonne Czepezauer, Peter Ahnert, Johannes Boltze, Holger Kirsten

Date Published: 1st Sep 2016

Publication Type: Journal article

Abstract (Expand)

BACKGROUND Genome-wide association studies have identified variants within the FTO (fat mass and obesity associated) locus as the strongest predictors of obesity amongst all obesity-associated genee loci. Recent evidence suggests that variants in FTO directly affect human adipocyte function through targeting IRX3 and IRX5 and thermogenesis regulation. AIM We addressed the relevance of this proposed FTO-IRX pathway in adipose tissue (AT) of children. RESULTS Expression of IRX3 was higher in adipocytes compared to SVF. We found increased adipocyte-specific expression of IRX3 and IRX5 with the presence of the FTO risk haplotype in lean children, whereas it was unaffected by risk variants in obese peers. We further show that IRX3 expression was elevated in isolated adipocytes and AT of lean compared to obese children, particularly in UCP1-negative adipocytes, and inversely correlated with BMI SDS. Independent of BMI, IRX3 expression in adipocytes was significantly related to adipocyte hypertrophy, and subsequent associations with AT inflammation and HOMA-IR in the children. CONCLUSION One interpretation of our observation of FTO risk variants linked to IRX3 expression and adipocyte size restricted to lean children, along with the decreased IRX3 expression in obese compared to lean peers, may reflect a defense mechanism for protecting body-weight, which is pertinent for lean children.

Authors: Kathrin Landgraf, Markus Scholz, Peter Kovacs, Wieland Kiess, Antje Körner

Date Published: 25th Aug 2016

Publication Type: Journal article

Abstract

Not specified

Authors: Dirk Hasenclever, Markus Scholz

Date Published: 23rd Aug 2016

Publication Type: Journal article

Abstract (Expand)

Three-dimensional (3D) whole body scanners are increasingly used as precise measuring tools for the rapid quantification of anthropometric measures in epidemiological studies. We analyzed 3D whole body scanning data of nearly 10,000 participants of a cohort collected from the adult population of Leipzig, one of the largest cities in Eastern Germany. We present a novel approach for the systematic analysis of this data which aims at identifying distinguishable clusters of body shapes called body types. In the first step, our method aggregates body measures provided by the scanner into meta-measures, each representing one relevant dimension of the body shape. In a next step, we stratified the cohort into body types and assessed their stability and dependence on the size of the underlying cohort. Using self-organizing maps (SOM) we identified thirteen robust meta-measures and fifteen body types comprising between 1 and 18 percent of the total cohort size. Thirteen of them are virtually gender specific (six for women and seven for men) and thus reflect most abundant body shapes of women and men. Two body types include both women and men, and describe androgynous body shapes that lack typical gender specific features. The body types disentangle a large variability of body shapes enabling distinctions which go beyond the traditional indices such as body mass index, the waist-to-height ratio, the waist-to-hip ratio and the mortality-hazard ABSI-index. In a next step, we will link the identified body types with disease predispositions to study how size and shape of the human body impact health and disease.

Authors: H. Loffler-Wirth, E. Willscher, P. Ahnert, K. Wirkner, C. Engel, M. Loeffler, H. Binder

Date Published: 29th Jul 2016

Publication Type: Not specified

Human Diseases: obesity

Abstract (Expand)

BACKGROUND The liver plays a key role in amino acid metabolism. In former studies, a ratio between branched-chain and aromatic amino acids (Fischer’s ratio) revealed associations with hepatic encephalopathy.. Furthermore, low concentrations of branched-chain amino acids were linked to sarcopenia in literature. Encephalopathy and sarcopenia are known to dramatically worsen the prognosis. Aim of this study was to investigate a complex panel of plasma amino acids in the context of mortality in patients with end-stage liver disease. METHODS 166 patients evaluated for orthotopic liver transplantation were included. 19 amino acids were measured from citrated plasma samples using mass spectrometry. We performed survival analysis for plasma amino acid constellations and examined the relationship to established mortality predictors. RESULTS 33/166 (19.9%) patients died during follow-up. Lower values of valine (p\textless0.001), Fischer’s ratio (p\textless0.001) and valine to phenylalanine ratio (p\textless0.001) and higher values of phenylalanine (p\textless0.05) and tyrosine (p\textless0.05) were significantly associated with mortality. When divided in three groups, the tertiles discriminated cumulative survival for valine (p = 0.016), phenylalanine (p = 0.024) and in particular for valine to phenylalanine ratio (p = 0.003) and Fischer’s ratio (p = 0.005). Parameters were also significantly correlated with MELD and MELD-Na score. CONCLUSIONS Amino acids in plasma are valuable biomarkers to determine increased risk of mortality in patients with end-stage liver disease. In particular, valine concentrations and constellations composed of branched-chain and aromatic amino acids were strongly associated with prognosis. Due to their pathophysiological importance, the identified amino acids could be used to examine individual dietary recommendations to serve as potential therapeutic targets.

Authors: Benedict Kinny-Köster, Michael Bartels, Susen Becker, Markus Scholz, Joachim Thiery, Uta Ceglarek, Thorsten Kaiser

Date Published: 13th Jul 2016

Publication Type: Journal article

Abstract (Expand)

Pneumonia is considered to be one of the leading causes of death worldwide. The outcome depends on both, proper antibiotic treatment and the effectivity of the immune response of the host. However, due to the complexity of the immunologic cascade initiated during infection, the latter cannot be predicted easily. We construct a biomathematical model of the murine immune response during infection with pneumococcus aiming at predicting the outcome of antibiotic treatment. The model consists of a number of non-linear ordinary differential equations describing dynamics of pneumococcal population, the inflammatory cytokine IL-6, neutrophils and macrophages fighting the infection and destruction of alveolar tissue due to pneumococcus. Equations were derived by translating known biological mechanisms and assuming certain response kinetics. Antibiotic therapy is modelled by a transient depletion of bacteria. Unknown model parameters were determined by fitting the predictions of the model to data sets derived from mice experiments of pneumococcal lung infection with and without antibiotic treatment. Time series of pneumococcal population, debris, neutrophils, activated epithelial cells, macrophages, monocytes and IL-6 serum concentrations were available for this purpose. The antibiotics Ampicillin and Moxifloxacin were considered. Parameter fittings resulted in a good agreement of model and data for all experimental scenarios. Identifiability of parameters is also estimated. The model can be used to predict the performance of alternative schedules of antibiotic treatment. We conclude that we established a biomathematical model of pneumococcal lung infection in mice allowing predictions regarding the outcome of different schedules of antibiotic treatment. We aim at translating the model to the human situation in the near future.

Authors: Sibylle Schirm, Peter Ahnert, Sandra Wienhold, Holger Mueller-Redetzky, Geraldine Nouailles-Kursar, Markus Loeffler, Martin Witzenrath, Markus Scholz

Date Published: 19th May 2016

Publication Type: Journal article

Abstract (Expand)

Dopamine has been implicated in the regulation of sleep-wake states and the circadian rhythm. However, there is no consensus on the impact of two established dopaminergic gene variants: the catechol-O-methyltransferase Val158Met (COMT Val158Met; rs4680) and the dopamine D4 receptor Exon III variable-number-of-tandem-repeat polymorphism (DRD4 VNTR). Pursuing a multi-method approach, we examined their potential effects on circadian preferences, arousal regulation and sleep. Subjects underwent a 7-day actigraphy assessment (SenseWear Pro3), a 20-minute resting EEG (analyzed using VIGALL 2.0) and a body mass index (BMI) assessment. Further, they completed the Morningness-Eveningness Questionnaire (MEQ), the Epworth Sleepiness Scale (ESS) and the Pittsburgh Sleep Quality Index (PSQI). The sample comprised 4625 subjects (19-82 years) genotyped for COMT Val158Met, and 689 elderly subjects (64-82 years) genotyped for DRD4 VNTR. The number of subjects varied across phenotypes. Power calculations revealed a minimum required phenotypic variance explained by genotype ranging between 0.5% and 1.5% for COMT Val158Met and between 3.3% and 6.0% for DRD4 VNTR. Analyses did not reveal significant genotype effects on MEQ, ESS, PSQI, BMI, actigraphy and EEG variables. Additionally, we found no compelling evidence in sex- and age-stratified subsamples. Few associations surpassed the threshold of nominal significance (p < .05), providing some indication for a link between DRD4 VNTR and daytime sleepiness. Taken together, in light of the statistical power obtained in the present study, our data particularly suggest no impact of the COMT Val158Met polymorphism on circadian preferences, arousal regulation and sleep. The suggestive link between DRD4 VNTR and daytime sleepiness, on the other hand, might be worth investigation in a sample enriched with younger adults.

Authors: P. Jawinski, S. Tegelkamp, C. Sander, M. Hantzsch, J. Huang, N. Mauche, M. Scholz, J. Spada, C. Ulke, R. Burkhardt, A. Reif, U. Hegerl, T. Hensch

Date Published: 6th May 2016

Publication Type: Not specified

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies