Publications

2 Publications matching the given criteria: (Clear all filters)
Human disease: melanoma2

Abstract (Expand)

Recent studies revealed trajectories of mutational events in early melanomagenesis, but the accompanying changes in gene expression are far less understood. Therefore, we performed a comprehensive RNA-seq analysis of laser-microdissected melanocytic nevi (n = 23) and primary melanoma samples (n = 57) and characterized the molecular mechanisms of early melanoma development. Using self-organizing maps, unsupervised clustering, and analysis of pseudotime (PT) dynamics to identify evolutionary trajectories, we describe here two transcriptomic types of melanocytic nevi (N1 and N2) and primary melanomas (M1 and M2). N1/M1 lesions are characterized by pigmentation-type and MITF gene signatures, and a high prevalence of NRAS mutations in M1 melanomas. N2/M2 lesions are characterized by inflammatory-type and AXL gene signatures with an equal distribution of wild-type and mutated BRAF and low prevalence of NRAS mutations in M2 melanomas. Interestingly, N1 nevi and M1 melanomas and N2 nevi and M2 melanomas, respectively, cluster together, but there is no clustering in a stage-dependent manner. Transcriptional signatures of M1 melanomas harbor signatures of BRAF/MEK inhibitor resistance and M2 melanomas harbor signatures of anti-PD-1 antibody treatment resistance. Pseudotime dynamics of nevus and melanoma samples are suggestive for a switch-like immune-escape mechanism in melanoma development with downregulation of immune genes paralleled by an increasing expression of a cell cycle signature in late-stage melanomas. Taken together, the transcriptome analysis identifies gene signatures and mechanisms underlying development of melanoma in early and late stages with relevance for diagnostics and therapy.

Authors: M. Kunz, H. Loffler-Wirth, M. Dannemann, E. Willscher, G. Doose, J. Kelso, T. Kottek, B. Nickel, L. Hopp, J. Landsberg, S. Hoffmann, T. Tuting, P. Zigrino, C. Mauch, J. Utikal, M. Ziemer, H. J. Schulze, M. Holzel, A. Roesch, S. Kneitz, S. Meierjohann, A. Bosserhoff, H. Binder, M. Schartl

Date Published: 12th Jul 2018

Publication Type: Not specified

Human Diseases: melanoma

Abstract (Expand)

Recent technological advances in single-cell genomics make it possible to analyze cellular heterogeneity of tumor samples. Here, we applied single-cell RNA-seq to measure the transcriptomes of 307 single cells cultured from three biopsies of three different patients with a BRAF/NRAS wild type, BRAF mutant/NRAS wild type and BRAF wild type/NRAS mutant melanoma metastasis, respectively. Analysis based on self-organizing maps identified sub-populations defined by multiple gene expression modules involved in proliferation, oxidative phosphorylation, pigmentation and cellular stroma. Gene expression modules had prognostic relevance when compared with gene expression data from published melanoma samples and patient survival data. We surveyed kinome expression patterns across sub-populations of the BRAF/NRAS wild type sample and found that CDK4 and CDK2 were consistently highly expressed in the majority of cells, suggesting that these kinases might be involved in melanoma progression. Treatment of cells with the CDK4 inhibitor palbociclib restricted cell proliferation to a similar, and in some cases greater, extent than MAPK inhibitors. Finally, we identified a low abundant sub-population in this sample that highly expressed a module containing ABC transporter ABCB5, surface markers CD271 and CD133, and multiple aldehyde dehydrogenases (ALDHs). Patient-derived cultures of the BRAF mutant/NRAS wild type and BRAF wild type/NRAS mutant metastases showed more homogeneous single-cell gene expression patterns with gene expression modules for proliferation and ABC transporters. Taken together, our results describe an intertumor and intratumor heterogeneity in melanoma short-term cultures which might be relevant for patient survival, and suggest promising targets for new treatment approaches in melanoma therapy.

Authors: T. Gerber, E. Willscher, H. Loeffler-Wirth, L. Hopp, D. Schadendorf, M. Schartl, U. Anderegg, G. Camp, B. Treutlein, H. Binder, M. Kunz

Date Published: 3rd Jan 2017

Publication Type: Not specified

Human Diseases: melanoma

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies