Publications

2 Publications matching the given criteria: (Clear all filters)

Abstract (Expand)

Background: The blood transcriptome is expected to provide a detailed picture of an organism's physiological state with potential outcomes for applications in medical diagnostics and molecular and epidemiological research. We here present the analysis of blood specimens of 3,388 adult individuals, together with phenotype characteristics such as disease history, medication status, lifestyle factors, and body mass index (BMI). The size and heterogeneity of this data challenges analytics in terms of dimension reduction, knowledge mining, feature extraction, and data integration. Methods: Self-organizing maps (SOM)-machine learning was applied to study transcriptional states on a population-wide scale. This method permits a detailed description and visualization of the molecular heterogeneity of transcriptomes and of their association with different phenotypic features. Results: The diversity of transcriptomes is described by personalized SOM-portraits, which specify the samples in terms of modules of co-expressed genes of different functional context. We identified two major blood transcriptome types where type 1 was found more in men, the elderly, and overweight people and it upregulated genes associated with inflammation and increased heme metabolism, while type 2 was predominantly found in women, younger, and normal weight participants and it was associated with activated immune responses, transcriptional, ribosomal, mitochondrial, and telomere-maintenance cell-functions. We find a striking overlap of signatures shared by multiple diseases, aging, and obesity driven by an underlying common pattern, which was associated with the immune response and the increase of inflammatory processes. Conclusions: Machine learning applications for large and heterogeneous omics data provide a holistic view on the diversity of the human blood transcriptome. It provides a tool for comparative analyses of transcriptional signatures and of associated phenotypes in population studies and medical applications.

Authors: M. Schmidt, L. Hopp, A. Arakelyan, H. Kirsten, C. Engel, K. Wirkner, K. Krohn, R. Burkhardt, J. Thiery, M. Loeffler, H. Loeffler-Wirth, H. Binder

Date Published: 11th Mar 2021

Publication Type: Journal article

Abstract (Expand)

BACKGROUND: Whole-genome studies of vine cultivars have brought novel knowledge about the diversity, geographical relatedness, historical origin and dissemination, phenotype associations and genetic markers. METHOD: We applied SOM (self-organizing maps) portrayal, a neural network-based machine learning method, to re-analyze the genome-wide Single Nucleotide Polymorphism (SNP) data of nearly eight hundred grapevine cultivars. The method generates genome-specific data landscapes. Their topology reflects the geographical distribution of cultivars, indicates paths of cultivar dissemination in history and genome-phenotype associations about grape utilization. RESULTS: The landscape of vine genomes resembles the geographic map of the Mediterranean world, reflecting two major dissemination paths from South Caucasus along a northern route via Balkan towards Western Europe and along a southern route via Palestine and Maghreb towards Iberian Peninsula. The Mediterranean and Black Sea, as well as the Pyrenees, constitute barriers for genetic exchange. On the coarsest level of stratification, cultivars divide into three major groups: Western Europe and Italian grapes, Iberian grapes and vine cultivars from Near East and Maghreb regions. Genetic landmarks were associated with agronomic traits, referring to their utilization as table and wine grapes. Pseudotime analysis describes the dissemination of grapevines in an East to West direction in different waves of cultivation. CONCLUSION: In analogy to the tasks of the wine waiter in gastronomy, the sommelier, our 'SOMmelier'-approach supports understanding the diversity of grapevine genomes in the context of their geographic and historical background, using SOM portrayal. It offers an option to supplement vine cultivar passports by genome fingerprint portraits.

Authors: M. Nikoghosyan, M. Schmidt, K. Margaryan, H. Loeffler-Wirth, A. Arakelyan, H. Binder

Date Published: 17th Jul 2020

Publication Type: Journal article

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies