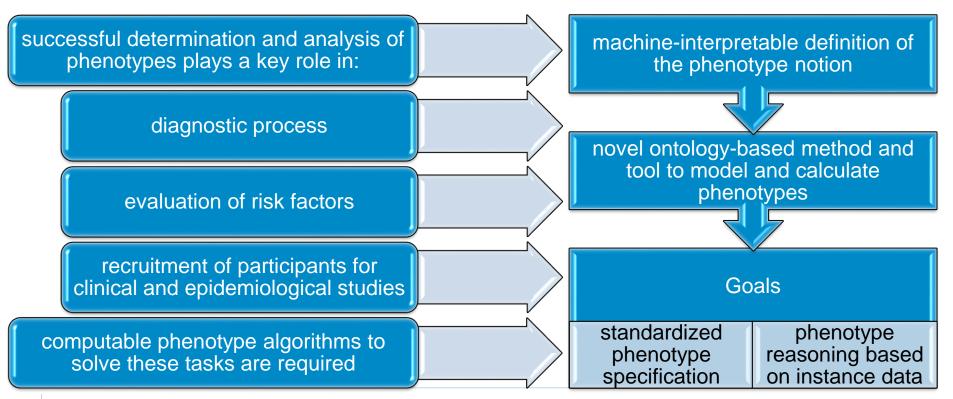


UNIVERSITÄT LEIPZIG

Medizinische Fakultät

ONTOLOGICAL MODELLING AND REASONING OF PHENOTYPES


JOWO/ODLS, September 2019, Graz Alexandr UCITELI, <u>Christoph BEGER</u>, Toralf KIRSTEN, Frank A. MEINEKE, Heinrich HERRE

Agenda

- 1. Motivation
- 2. Smart Medical Information Technology for Healthcare (SMITH)
- 3. PhenoMan Integration in SMITH
- 4. Core Ontology of Phenotypes (COP)
- 5. Phenotype Algorithm Specification Ontologies (PASO)
- 6. Phenotype Manager (PhenoMan)
- 7. Conclusion

Motivation

Smart Medical Information Technology for Healthcare (SMITH)

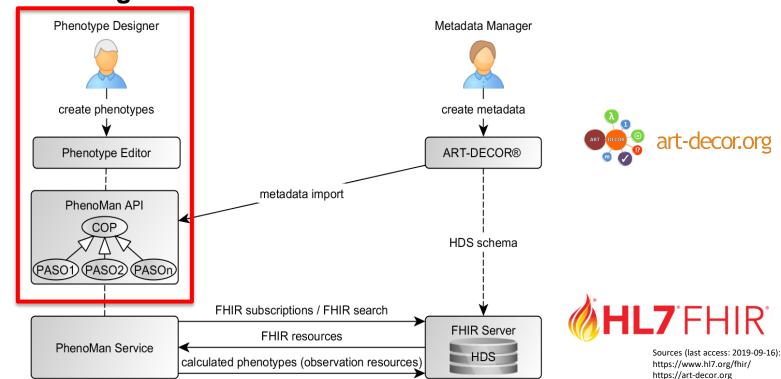
- The main goal of the German Medical Informatics Initiative (MII) is making clinical data available for research
- SMITH is one of four funded consortia

SPONSORED BY THE

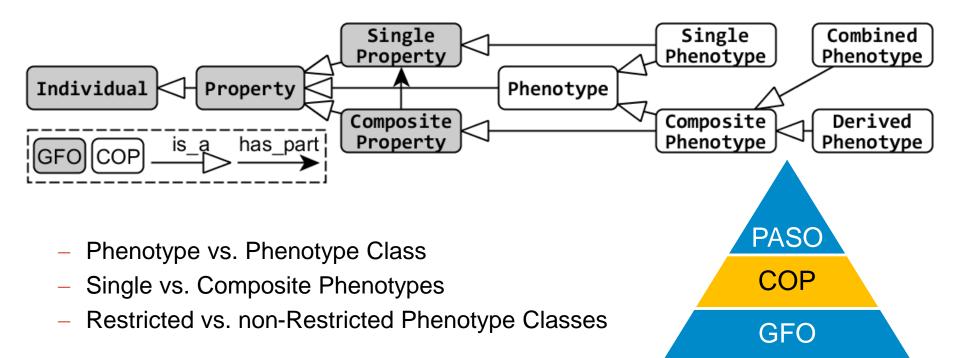
Federal Ministry of Education and Research

Smart Medical Information Technology for Healthcare (SMITH)

- The main goal of the German Medical Informatics Initiative (MII) is making clinical data available for research
- SMITH is one of four funded consortia
- A phenotyping pipeline (PheP) will be established to systematically develop, evaluate and execute validated algorithms and models for classifying and annotating patient data based on routine electronic health records (EHR)
 - triggering alerts and actions
 - data sharing and deep analyses of patient care and outcomes
 - phenotype engines and factories required to specify, set up and execute phenotype algorithms



SPONSORED BY THE


Federal Ministry of Education and Research

PhenoMan Integration in SMITH

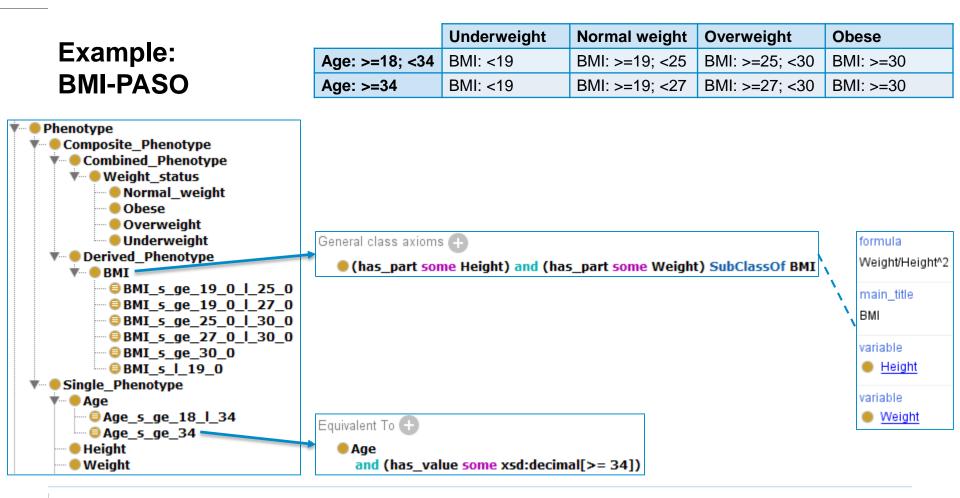
ONTOLOGICAL MODELLING OF PHENOTYPES

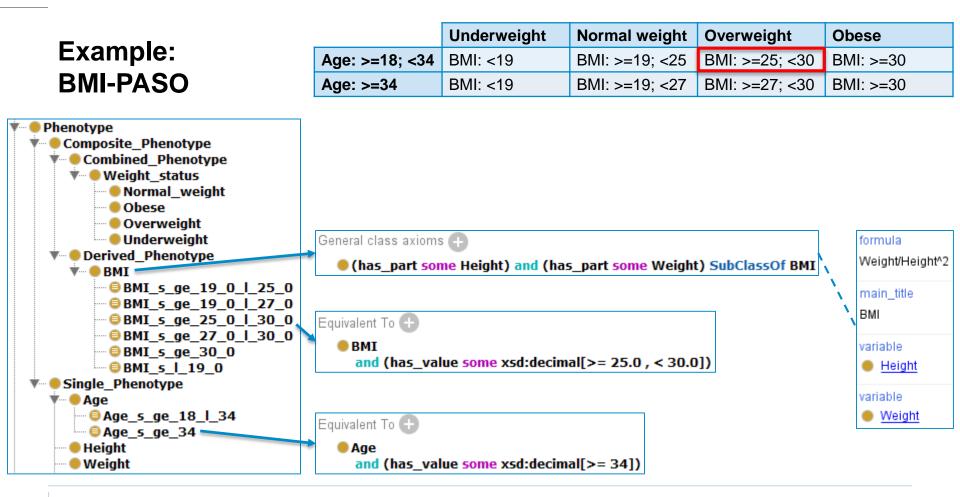
Core Ontology of Phenotypes (COP)

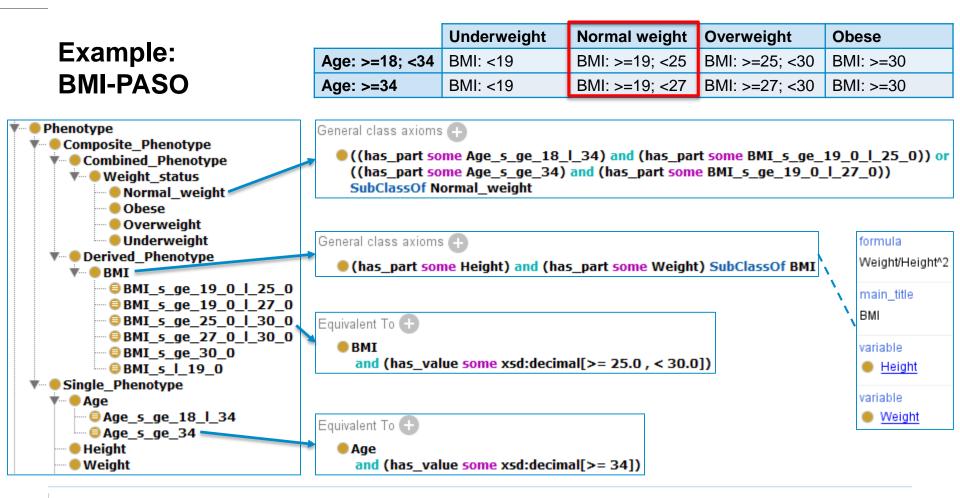
Phenotype Algorithm Specification Ontologies (PASO)

- Model specific phenotypes (algorithms) using the COP
- Are embedded in the COP
 - the classes of the PASO are subclasses of the COP classes
 - every PASO subclass of the COP classes cop:Single_Phenotype, cop:Combined_Phenotype or cop:Derived_Phenotype is a phenotype class and is instantiated by phenotypes
 - direct subclasses are non-restricted, while the subclasses of the non-restricted phenotype classes are restricted

		Underweight	Normal weight	Overweight	Obese
Example:	Age: >=18; <34	BMI: <19	BMI: >=19; <25	BMI: >=25; <30	BMI: >=30
BMI-PASO	Age: >=34	BMI: <19	BMI: >=19; <27	BMI: >=27; <30	BMI: >=30


Freemales		Underweight	Normal weight	Overweight	Obese
Example:	Age: >=18; <34	BMI: <19	BMI: >=19; <25	BMI: >=25; <30	BMI: >=30
BMI-PASO	Age: >=34	BMI: <19	BMI: >=19; <27	BMI: >=27; <30	BMI: >=30
Phenotype Composite_Phenotype Combined_Phenotype Weight_status Normal_weight Obese Overweight Underweight Derived_Phenotype Mut					


🔻 🔍 🖲 🗮 🔻


BMI_s_ge_19_0|_25_0
BMI_s_ge_19_0|_27_0
BMI_s_ge_25_0|_30_0
BMI_s_ge_27_0|_30_0
BMI_s_ge_30_0
BMI_s_l_19_0
Single_Phenotype
Age
Age
Age
Age

		Underweight	Normal weight	Overweight	Obese
Example:	Age: >=18; <34	BMI: <19	BMI: >=19; <25	BMI: >=25; <30	BMI: >=30
BMI-PASO	Age: >=34	BMI: <19	BMI: >=19; <27	BMI: >=27; <30	BMI: >=30
<pre>BINI-PASO Phenotype Composite_Phenotype Combined_Phenotype Combi</pre>	Equivalent To 🕂	BMI: <19		BMI: >=27; <30	BMI: >=30
- traight					

÷.

TECHNICAL ASPECTS OF THE PHENOTYPE MANAGER (PHENOMAN)

```
"resourceType": "Observation",
"id": "162209",
"meta": {
  "versionId": "1",
  "lastUpdated": "2019-08-26T11:10:19.353+00:00"
},
"code": {
  "coding": [
      "system": "http://loinc.org",
      "code": "3141-9",
      "display": "Body weight"
    },
      "system": "http://snomed.info/sct",
      "code": "27113001",
      "display": "Body weight (observable entity)"
},
"subject": {
  "reference": "Patient/157411"
1,
"effectiveDateTime": "2019-08-26T13:09:58+02:00",
"valueQuantity": {
  "value": 75.0,
  "unit": "kq",
  "system": "http://unitsofmeasure.org",
  "code": "kg"
```

```
HL7 FHIR Resource of weight observation as JSON
```

- Implements a multistage reasoning approach combining standard reasoners (e.g., Pellet or HermiT) and mathematical calculations
- Receives instance data set from a FHIR Server as FHIR resources, interprets and inserts it into the ontology

```
"resourceType": "Observation",
"id": "162209",
"meta": {
  "versionId": "1",
  "lastUpdated": "2019-08-26T11:10:19.353+00:00"
},
"code": {
  "coding": [
      "system": "http://loinc.org",
      "code": "3141-9",
      "display": "Body weight"
    },
      "system": "http://snomed.info/sct",
      "code": "27113001",
      "display": "Body weight (observable entity)"
"subject": {
  "reference": "Patient/157411"
"effectiveDateTime": "2019-08-26T13:09:58+02:00",
"valueQuantity": {
  "value": 75.0,
  "unit": "kq",
  "system": "http://unitsofmeasure.org",
  "code": "kg"
```

```
HL7 FHIR Resource of weight observation as JSON
```

- Implements a multistage reasoning approach combining standard reasoners (e.g., Pellet or HermiT) and mathematical calculations
- Receives instance data set from a FHIR Server as FHIR resources, interprets and inserts it into the ontology
 - individual properties (single phenotypes) as instances of the direct subclasses of cop:Single_Phenotype (e.g., Weight, Height) with property assertions (e.g., "has_value 75" for Weight)
 - a composite phenotype as instance of the class cop:Composite_Phenotype, which combines all the single phenotype instances using has_part property assertions

```
"resourceType": "Observation",
"id": "162209",
"meta": {
  "versionId": "1",
  "lastUpdated": "2019-08-26T11:10:19.353+00:00"
"code": {
  "coding": [
      "system": "http://loinc.org",
      "code": "3141-9",
      "display": "Body weight"
    },
      "system": "http://snomed.info/sct",
      "code": "27113001",
      "display": "Body weight (observable entity)"
"subject": {
  "reference": "Patient/157411"
},
"effectiveDateTime": "2019-08-26T13:09:58+02:00",
"valueOuantity": {
  "value": 75.0,
  "unit": "kq",
  "system": "http://unitsofmeasure.org",
  "code": "ka"
```

HL7 FHIR Resource of weight observation as JSON

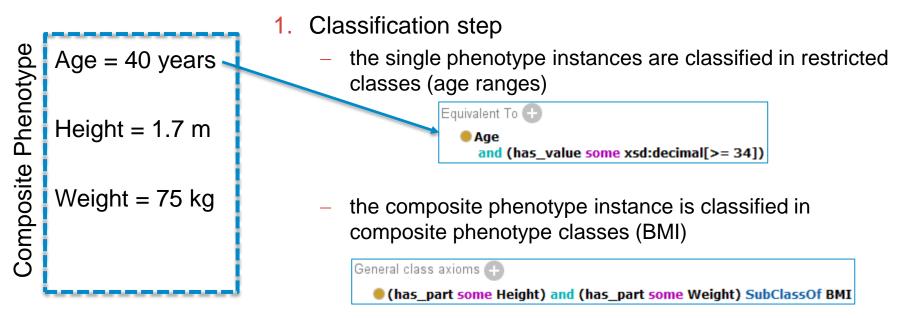
PhenoMan Execution Example (BMI) - I

Age = 40 years Height = 1.7 m Weight = 75 kg

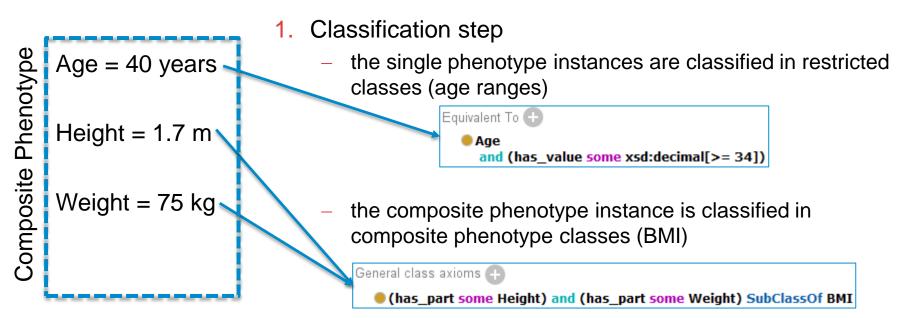
- . Classification step
 - the single phenotype instances are classified in restricted classes (age ranges)

```
Equivalent To +

Age


and (has_value some xsd:decimal[>= 34])
```

 the composite phenotype instance is classified in composite phenotype classes (BMI)


General class axioms 🕂

(has_part some Height) and (has_part some Weight) SubClassOf BMI

PhenoMan Execution Example (BMI) - I

PhenoMan Execution Example (BMI) - I

PhenoMan Execution Example (BMI) - II

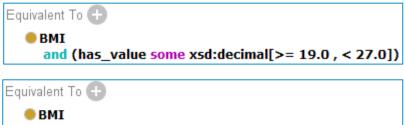
type	Age = 40 years	
Phenotype	Height = 1.7 m	
Composite	Weight = 75 kg	
Con		

- 2. Calculation step
 - the formula of the derived phenotypes is calculated (BMI)
 - a BMI instance with the calculated value (≈ 26) is added to the composite phenotype instance

PhenoMan Execution Example (BMI) - II

Composite Phenotype Age = 40 years — ____ Height = 1.7 mformula Weight/Height^2 Weight = 75 kg main title BMI variable Height variable Weight

- 2. Calculation step
 - the formula of the derived phenotypes is calculated (BMI)
 - a BMI instance with the calculated value (≈ 26) is added to the composite phenotype instance


PhenoMan Execution Example (BMI) - II

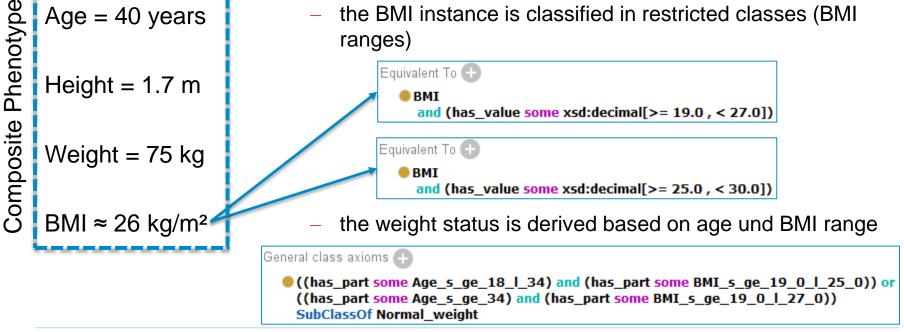
Calculation step 2. **Composite Phenotype** Age = 40 years the formula of the derived phenotypes is calculated (BMI) a BMI instance with the calculated value (≈ 26) is added ____ to the composite phenotype instance Height = 1.7 mformula Weight/Height^2 Weight = 75 kg main title BMI BMI ≈ 26 kg/m² variable Height variable Weight

PhenoMan Execution Example (BMI) - III

Phenotype Age = 40 years Height = 1.7 mComposite Weight = 75 kgBMI ≈ 26 kg/m²

- 3. Classification step
 - the BMI instance is classified in restricted classes (BMI ranges)

- and (has_value some xsd:decimal[>= 25.0 , < 30.0])
- the weight status is derived based on age und BMI range


```
General class axioms 🗗
```

((has_part some Age_s_ge_18_l_34) and (has_part some BMI_s_ge_19_0_l_25_0)) or ((has_part some Age_s_ge_34) and (has_part some BMI_s_ge_19_0_l_27_0)) SubClassOf Normal_weight

PhenoMan Execution Example (BMI) - III

Classification step 3.

> the BMI instance is classified in restricted classes (BMI ranges)

PhenoMan Execution Example (BMI) - III

Classification step 3. Phenotype Age = 40 years the BMI instance is classified in restricted classes (BMI ranges) Equivalent To 🔂 Height = 1.7 mBMI and (has_value some xsd:decimal[>= 19.0, < 27.0]) Composite Equivalent To 🖶 Weight = 75 kgBMI and (has value some xsd:decimal[>= 25.0, < 30.0]) BMI ≈ 26 kg/m² the weight status is derived based on age und BMI range General class axioms 🗗 Normal Weight (has part some Age s ge 18 | 34) and (has part some BMI s ge 19 0 | 25 0)) or ((has_part some Age_s_ge_34) and (has_part some BMI_s_ge_19_0_l_27_0)) SubClassOf Normal_weight

PhenoMan Execution Example (BMI) - IV

- Classification and calculation steps can be repeated several times until all formulas are calculated and all phenotypes are classified
 - if a non-restricted phenotype class has subclasses, which are in turn used in combined phenotypes

PhenoMan Execution Example (BMI) - IV

- Classification and calculation steps can be repeated several times until all formulas are calculated and all phenotypes are classified
 - if a non-restricted phenotype class has subclasses, which are in turn used in combined phenotypes
- PhenoMan writes the results (calculated or derived phenotypes) as observations back to the FHIR server

HL7 FHIR Resource of BMI observation as JSON

Creating PASOs with the Phenotype Editor

Phenotype Editor		_ ×
Phenotype Editor INTRODUCTION ONTOLOGY E	ROWSER ED	NTOR SETTINGS 0.4.12
Ontology: SOFA		REASONING
 Search for phenotype Phenotype_Category Laboratory Medication Nervous System Score System GCS SOFA Cardiovascular System Score SOFA Cardiovascular System Score 2 SOFA Cardiovascular System Score 3 SOFA Cardiovascular System Score 4 SOFA Cardiovascular System Score 4 SOFA Cardiovascular System Score 5 SOFA Cardiovascular System Score 4 SOFA Cardiovascular System Score 5 SOFA Cardiovascular System Score 6 SOFA Cardiovascular System Score 7 SOFA Coagulation Score 7 SOFA Chardiovascular System Score 7 SOFA Coagulation Score 7 SOFA Nervous System Score 7 SOFA Nervous System Score 7 SOFA Nervous System Score 7 SOFA Respiratory System Score 7 SOFA Score 7 	Identifier Primary Title Restriction*	A unique identifier of the phenotype or category. If this field is left empty, a value will be generated automatically. SOFA_Cardiovascular_System_Score_3 The primary title which will be used for displaying this phenotype in forms or graphics. SOFA Cardiovascular System Score 3 Boolean-Expression* AND OR () RESET @Dopamine ln [> 5.0; <= 15.0] Ug/Kg/Min OR @Epinephrine <= 0.1 Ug/Kg/Min OR @Drag-and-drop phenotypes from the right site into your expression. By Score 3 Some description about scores.
4		

Conclusion

- Novel ontology-based method to model phenotypes for automated phenotype reasoning based on instance data (e.g., patient data)
- Iterative reasoning approach, which combines classification tasks with mathematical calculations at runtime
- Can be used in clinical context, e.g., for supporting the diagnostic process or recruiting appropriate participants for studies
- Successfully evaluated
 - some algorithms (such as socio-economic status) were evaluated in comparison with the corresponding SPSS derivatives based on the research database of the LIFE study

UNIVERSITÄT LEIPZIG

Medizinische Fakultät

THANK YOU FOR YOUR ATTENTION!

Contact:

Alexandr Uciteli www.imise.uni-leipzig.de/Mitarbeiter/Alexandr_Uciteli Alexandr.Uciteli@imise.uni-Leipzig.de

Christoph Beger www.imise.uni-leipzig.de/Mitarbeiter/Christoph_Beger Christoph.Beger@imise.uni-Leipzig.de

imise.

Implementation

PhenoMan:

- OWLAPI, HermiT, Openllet
- For calculations: Java Expression Evaluator (EvalEx)
 - enables evaluating mathematical and Boolean (e.g., Boolean operators and IF-THEN-ELSE structures) expressions
 - supports defining custom functions and operators.

Phenotype Editor:

- Desktop app designed with JavaScript and shipped as cross platform Electron app with an integrated lightweight web browser (Chromium)
- Backend service provides information and management functionalities of a PASO via REST interface (DropWizard), serves as a mediator to the PhenoMan API

https://github.com/ChristophB/ontology_service https://github.com/ChristophB/phenotype_editor